Proton Radius at COMPASS - Test Measurement 2018 Status Report

Christian Dreisbach, Jan Friedrich, Sebastian Uhl

COMPASS Technical Board Meeting 5th June, 2018

Principle of the measurement

- hydrogen TPC acting as active target
 - measurement of energy of recoil proton
 - between 0.5 and 100 MeV
 - required energy resolution: $\Delta \approx 60 \, \text{keV}$
- silicon telescopes up- and downstream of target
 - measurement of muon scattering angles
 - 300 μ rad at $Q^2 \approx 10^{-3} (\text{GeV}/c)^2$
 - ullet required angular resolution $\sigma \lessapprox 100 \, \mu \mathrm{rad}$

Combination of TPC and silicon detectors

ullet in simulation: required resolution achieved down to small Q^2

Combination of TPC and silicon detectors

- ullet in simulation: required resolution achieved down to small Q^2
- test beam this year

Test beam set-up

- calibration with α -source (241 Am)
- performance of TPC in muon beam

Test beam set-up

- calibration with α -source (241 Am)
- performance of TPC in muon beam
- investigate need or benefit of a higher granularity of the readout plane

Test beam set-up

- calibration with α -source (241 Am)
- performance of TPC in muon beam
- investigate need or benefit of a higher granularity of the readout plane
- correlate events in silicon detectors with events in TPC

• recoil protons with muon beam observed

- recoil protons with muon beam observed
- energy spectrum of recoil protons shows expected features

- recoil protons with muon beam observed
- energy spectrum of recoil protons shows expected features

Generator + beam (A66)

Generator energy resolution

- recoil protons with muon beam observed
- energy spectrum of recoil protons shows expected features
- required energy resolution achievable in our environments

Reconstruction of the data of the silicon telescope

reconstruction of straight tracks

Reconstruction of silicon telescopes

- vertices found at right positions
 - ullet reliable alignment \Rightarrow details of TPC clearly visible

Reconstruction of silicon telescopes

- vertices found at right positions
 - ullet reliable alignment \Rightarrow details of TPC clearly visible
- basic Q^2 spectrum visible

Combination of TPC and silicon data

- \bullet first \sim 10% of data processed
- measured $Q_{\rm SI}^2 \geq 10^{-3}\,{
 m GeV}^2(\theta \geq 300~\mu rad)$
- vertex located in TPC volume

Preliminary conclusions from the 2018 test

- good performance of (test) TPC in "broad" muon beam
- good performance of (test) silicon telescopes
- evidence for correlation of proton and muon signals
 - \Rightarrow to be studied in full detail

Setup for the COMPASS measurement

- TPC and silicon telescopes in the nominal COMPASS target region
- trigger: two scenarios under investigation
 - SciFi with high segmentation for a "kink trigger"
 - high-rate triggerless readout (requires new readout scheme for the silicon detectors)
- spectrometer in usual (open) configuration for scattered muon momentum measurement
- e.m. calorimetry for control of radiative effects and measurement of muon-electron scattering (similar / competing process)

11 111 11 11 11

Possible realization for TPC

- 400 mm anodes, 100 mm drift
- IKAR TPC available, but needs a lot of modifications to increase performance (feedthoughs, flanges, segmentations, etc.)

Possible realization for TPC

- 820 mm length, 1000 mm diameter and 240 mm drift gaps
- pressure up to 25 bar
 - \Rightarrow needs to be built

Organizational

- several options for the TPC, existing ones or construction of a new one
- decision and agreements must be taken now without further delay for realizing the measurement in 2022

On the achievable precision

- for $Q^2 > 0.001$ (sensitive to proton radius) the measurement is dominated by the statistical precision of the one-year beam time
- for $Q^2 < 0.001$ (control region) the systematic effects will dominate (efficiencies, MS, RC....)
- full evaluation (adaption of the MC simulation) still to be done, depends on the final setup configuration
- high-precision scattering c.s. measurements reach best 0.5 1%; reaching the 10^{-3} level is a new challenge

Outlook and future plans

- thorough analysis of the recorded data
 - time, spatial and energy matching of events
 - extract (dummy) value for proton radius from data
 - studies of i.e. different pressure and beam conditions
- construction of SciFi "kink trigger" elements ongoing
 - · possible beam test with SI telescope in September