

SWISS PERSPECTIVES FOR THE DUNE EXPERIMENT

Antonio Ereditato, University of Bern, for the groups of Basel, Bern, ETHZ

DUNE Experiment

Neutrino beam physics: study LBL ν_e appearance and ν_μ disappearance in a WBB to measure MH, CPV, and neutrino mixing parameters in a single experiment. Deep underground location reduces cosmogenic background and enables sensitivity to low-energy physics.

Underground neutrino observatory: unique opportunity for matter instability searches, SN neutrino detection, atmospheric neutrinos,...

Oscillation sensitivity

DUNE Conceptual Design Report (CDR) arXiv:1512.06148

Order 1000 v_e appearance events in ~7 years of equal running in neutrino and antineutrino mode

Sensitivity to CPV

DUNE CDR

CP Violation

Width of band indicates variation in possible central values of θ_{23}

Simultaneous measurement of neutrino mixing angles and δ_{CP}

Other oscillation measurements

DUNE CDR

Width of band indicates variation in possible central values of θ_{23}

Width of band indicates variation in possible true value of δ_{CP}

Improved simulations (w.r.t. CDR)

Sensitivity from MC-based analysis with automated reconstruction and event selection exceeds CDR sensitivity!

LBNF Beam

Neutrino Flux at 1300 km (CDR Optimized Beam)

- 60-120 GeV proton beam
- 1.2 MW, upgradeable to 2.4 MW
- Horn-focused neutrino beam optimized for CPV sensitivity
- Design of 3-horn focusing system based on optimized parameters (in progress)
- Neutrino and antineutrino modes

DUNE Near Detector

 Constrain systematics for long-baseline oscillation analysis: flux, cross-section, and detector uncertainties

DUNE ND design concept near final (ND Design Group)

Conceptual Design Report (CDR) planned for 2019

- DUNE ND design concept is an integrated system composed of multiple detectors:
 - Modular, pixel readout LAr TPC
 - Magnetized multi-purpose tracker
 - Electromagnetic calorimeter
 - Muon chambers
- Conceptual design will preserve option to move ND for off-axis measurements

DUNE Far Detector

- 4 x 10-kton (fiducial) LAr TPC modules
- Single- and dual-phase detector designs
- Integrated photon detection
- Modules will not be identical

Single phase: modular wire-plane readout

DUNE Far Detector

Dual phase: signal extracted and amplified in gas phase

153600 channels

80 3x3 m² "CRPs" (Charge Readout Planes)

PMTs

Anode

LAr

DUNE general timeline

2018: ProtoDUNEs at CERN

2019: Technical Design Report

2019: Far site primary excavation begins

2022: First module installation begins

2026: Neutrino beam available

Physics data as soon as 1st module complete

- Atmospheric v
- SNB and solar v
- Matter instability
- Detector calibration

Swiss activities:

Seminal work for the establishment of the Collaboration and of the LBNF/DUNE project.

DUNE IIB 2014

A. Rubbia, first co-spokesperson of DUNE

A. Ereditato, member of the Fermilab Neutrino Council

Dual-phase prototypes @ CERN (ETHZ)

3x1x1 ProtoDune DP

ArgonCube for the ND (Bern)

DUNE LAr TPC

Financial considerations

Based on running regular SNSF grants:

FLARE 2017-2018: received 1.5 MCHF

FLARE 2019-2020: to be requested 1.5 MCHF

FLARE 2021 → ~1 MCHF/year

SERI FUNDING: requested 13 MCHF for LBNF (under evaluation)