
Testing of complex, large-scale distributed storage systems: a CERN disk storage case study

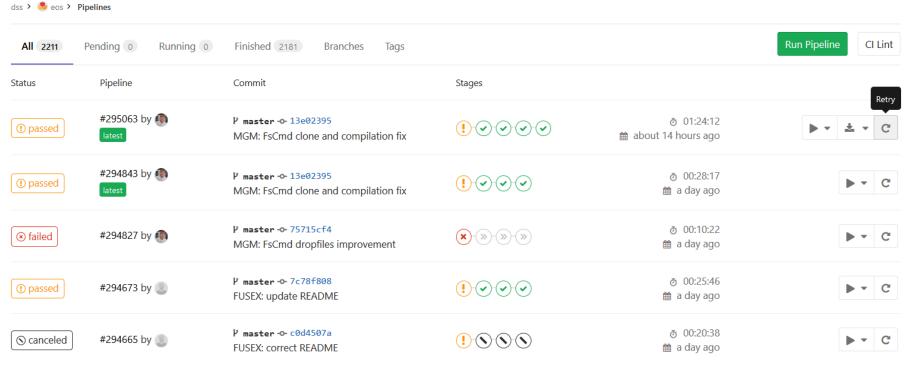
J. Makai, A. J. Peters, G. Bitzes, E. A. Sindrilaru, M. K. Simon, A. Manzi (speaker)
CERN

EOS

- Disk file storage
- Designed for Massive storage with high performances (> 50PB, 500 M files and Khz metadata operations)
- In memory namespace
- New distributed namespace backend (QuarkDB)
- https://indico.cern.ch/event/58795
 5/contributions/2936873/

EOS CI till beginning of 2017

- Jenkins Cl
 - Not state of the art anymore
 - Lacks some functionalities
 - Harder to maintain (lot of plugins from different sources)
- No real CI present for EOS
 - Only building RPMs for couple of platforms (CC7, SLC6 maintained mostly)
 - Using mock for build
 - No regression testing, regular static analysis in place
 - No integration with other build facilities (e.g. Koji)
 - Lot of manual steps, error-prone


CHEP 2018

Long journey behind us

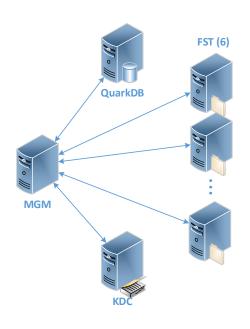
- We started again almost from scratch
- Migration to Gitlab CI for EOS, XrootD and all related projects
- Completely new technologies
 - Docker containers instead of mock
 - Docker images/containers for system testing and distribution
 - Compiler caching
 - Static analysis
 - Google test for unit testing
- New build cluster
- Support for brand new platforms
- Agile mindset, easy and quick to respond to new issues, needs

Migration to Gitlab CI

Docker containers for builds

- Isolated build environment
- Faster to support new platforms
 - mock moves slowly
 - Images are immediately present
- Support other distributions with different packaging
- Still one homogeneous build environment to manage

CHEP 2018


New platforms supported

- Mac OS
 - Not completely new but revived from its ashes
 - Updated build to Sierra
- Fedora
 - We can update quickly to latest versions thanks to the new ecosystem
 - Fedora 27, 28 and rawhide currently in CI
- Debian
 - Ubuntu artful & bionic in CI
- Docker image for each release available via GitLab Registry
 - gitlab-registry.cern.ch/dss/eos/eos-prod:4.3.2

Docker based testing

- Docker image created for each build with fresh packages of the changes
- Simulates a fully functional system with all its features
- https://gitlab.cern.ch/eos/eosdocker project
 - Independent from the CI environment
 - Used also for development and easy functionality showcase

Docker based testing – System test

- Both with old, in-memory and new, quarkdb namespace
- New fully functional instance of EOS is created: tests booting, authentication, etc.
- Runs eos functional tests: testing EOS commands with eos and xrootd clients
- FUSE(X) testing: fuse microtests for both, benchmarks for FUSEX and POSIX compliance tests for FUSEX daily
 - https://indico.cern.ch/event/587955/contributions/301271 8/

Docker based testing – Stress test

- To put some load on the system
- Write, stat, read, delete files from multiple threads simultaneously using xrootd protocol

```
10000 files :: 100 threads :: Run 2/3

PASS xroot :: write (13.60 sec)
    Rate: 735.42 Hz
    Latency span: from 0.31 to 8.91 sec

PASS xroot :: stat (0.61 sec)
    Rate: 16489.76 Hz
    Latency span: from 0.00 to 0.56 sec

PASS xroot :: read (8.54 sec)
    Rate: 1171.22 Hz
    Latency span: from 0.21 to 7.06 sec

PASS xroot :: delete (3.82 sec)
    Rate: 2619.79 Hz
    Latency span: from 0.00 to 3.58 sec
```

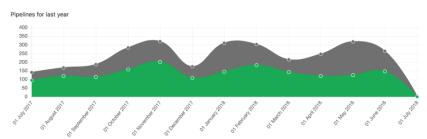
```
10000 files :: 100 threads :: Run 3/3

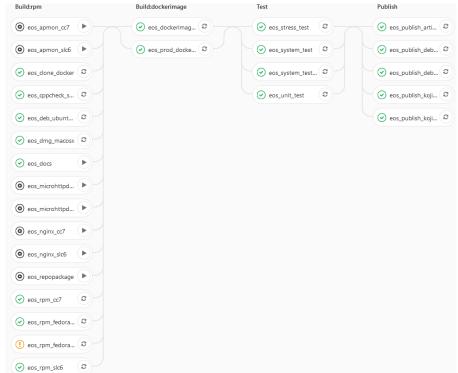
PASS xroot :: write (16.61 sec)
    Rate: 602.00 Hz
    Latency span: from 0.12 to 8.39 sec

PASS xroot :: stat (1.46 sec)
    Rate: 6864.65 Hz
    Latency span: from 0.01 to 1.44 sec

PASS xroot :: read (16.73 sec)
    Rate: 597.70 Hz
    Latency span: from 0.53 to 5.21 sec

PASS xroot :: delete (5.06 sec)
    Rate: 1976.40 Hz
    Latency span: from 0.00 to 4.62 sec
```

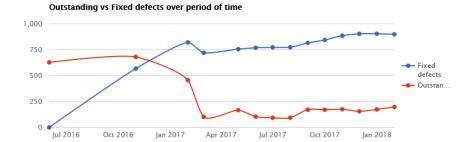


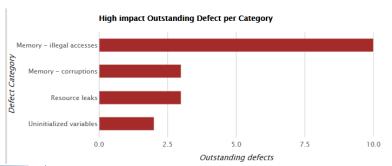

Gitlab CI Pipeline – 30 jobs, 4 stages

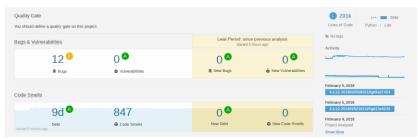
- No manual, no error-prone steps
- Integrated with everything possibly
 - SRPM → CERN Koji

Overall statistics

- · Total: 3534 pipelines
- Successful: 2012 pipelines
- Failed: 977 pipelines
- · Success ratio: 67%






Static analysis – Coverity & Sonar

- Runs once a day
- Special instrumented compilation required

- For each push to master
 - Cppcheck: analysis on source code level, no compilation

Conclusions & Future steps

- Successfully implemented Continuous Testing for EOS since more than a year
- Next Steps:
 - Implement CD via Kubernetes integration in Gitlab
 - Add EOS HTTP/GridFTP gateways testing
 - Add more regression tests for functionality
 - Implement Robustness testing

