EuroCirCol **Optics Options JACQUELINE KEINTZEL** for the **TU VIENNA** CERN, MEYRIN **HE-LHC** EuroCirCol Meeting

17. – 18. October 2018 KIT Karlsruhe, Germany

TU WIEN

Acknowledgements to Michael Benedikt, Michael Hofer, Rogelio Tomás, Léon v. Riesen-Haupt, Thys Risselada, Demin Zhou, Frank Zimmermann

Outline

- Requirements of the HE-LHC
- Lattice Generation and Geometry Fitting
- Baseline Options
- Effect of Quadrupole Errors in the Main Dipoles
- Integrated Insertion Region Optics
- Conclusion and Outlook

Outline

• Requirements of the HE-LHC

- Lattice Generation and Geometry Fitting
- Baseline Options
- Effect of Quadrupole Errors in the Main Dipoles
- Integrated Insertion Region Optics
- Conclusion and Outlook

EUROCIRCOL 17. OKT 2018

- Same tunnel as the LHC
- Injection energy: 450 GeV, 900 GeV or 1.3 TeV
- Similar Design
 - Two counter rotating proton beams
 - Eight arcs, IRs
 - Four beam crossings

- Same tunnel as the LHC
- Injection energy: 450 GeV, 900 GeV or 1.3 TeV
- Similar Design
 - Two counter rotating proton beams
 - Eight arcs, IRs
 - Four beam crossings
- Centre of mass energy: 27 TeV
- Small geometry offset to the LHC (< 3 cm¹)
- Beam Stay Clear > 10 σ

¹ V. Mertens. Private communication.

- Same tunnel as the LHC
- Injection energy: 450 GeV, 900 GeV or 1.3 TeV
- Similar Design
 - Two counter rotating proton beams
 - Eight arcs, IRs
 - Four beam crossings
- Centre of mass energy: 27 TeV
- Small geometry offset to the LHC (< 3 cm¹)
- Beam Stay Clear > 10 σ

ightarrow Generate and test different arc cell and dispersion suppressor options

- Same tunnel as the LHC
- Injection energy: 450 GeV, 900 GeV or 1.3 TeV
- Similar Design
 - Two counter rotating proton beams
 - Eight arcs, IRs
 - Four beam crossings
- Centre of mass energy: 27 TeV
- Small geometry offset to the LHC (< 3 cm¹)
- Beam Stay Clear > 10 σ

LHC Design Report

→ Generate and test different arc cell and dispersion suppressor options

→ Tool: ALGEA (Automatic Lattice GEneration Application)

¹ V. Mertens. Private communication.

Outline

- Requirements of the HE-LHC
- Lattice Generation and Geometry Fitting
- Baseline Options
- Effect of Quadrupole Errors in the Main Dipoles
- Integrated Insertion Region Optics
- Conclusion and Outlook

ALGEA

EUROCIRCOL 17. OKT 2018

ALGEA

- Based on a few input parameters flexible generation of
 - Sequence
 - Powering
 - Naming convention
 - Arcs and Dispersion Suppressors
 - Beam 1 and beam 2

- Constraints
 - Similar FODO cell layout as in LHC
 - Tunnel length
 - IP positions

JACQUELINE KEINTZEL

OPTICS OPTIONS FOR THE HE-LHC

Geometry Optimisation in ALGEA

EUROCIRCOL 17. OKT 2018

Geometry Optimisation in ALGEA

- Lattice generation still challenging
- \rightarrow new machine has to fit in the tunnel
- \rightarrow DS and arcs have to be optimised for lattice

Geometry Optimisation in ALGEA

Example of Geometry Fitting

EUROCIRCOL 17. OKT 2018

Example of Geometry Fitting

• Before

- Maximal offset up to 35 cm
- Offset distributed irregularly over arc

Example for an 18 cells per arc design

Example of Geometry Fitting

• Before

- Maximal offset up to 35 cm
- Offset distributed irregularly over arc

- After
 - Maximal offset decreased by factor 4
 - Offset distributed symmetrically over arc

EUROCIRCOL 17. OKT 2018

Outline

- Requirements of the HE-LHC
- Lattice Generation and Geometry Fitting
- Baseline Options
- Effect of Quadrupole Errors in the Main Dipoles
- Integrated Insertion Region Optics
- Conclusion and Outlook

EUROCIRCOL 17. OKT 2018

- Studying various arc cell options lead to conclude on two baseline options
 - 18x90: 18 cells per arc, 90° phase advance per cell
 - 23x90: 23 cells per arc, 90° phase advance per cell

Parameter	Unit	18x90	23x90
Phase Advance per Cell	o	90	90
Cell Length	m	137.33	106.9
Dipoles per Cell	-	8	6
Dipole Length	m	13.94	13.83
Bending Angle per Dipole	o	0.28	0.29
Filling Factor	-	0.81	0.78
Quadrupole Length	m	2.8	3.5
Quadrupole Strength	T/m	336	335
β_{max}/β_{min}	m	230/40	177/32
D _{max} /D _{min}	m	3.60/1.76	2.20/1.10
Momentum Compaction	10-4	5.84	3.54
Required Field for 27 TeV c.o.m.	Т	15.85	16.59
c.o.m. energy with 16 T Dipoles	TeV	27.24	26.01

- Studying various arc cell options lead to conclude on two baseline options
 - 18x90: 18 cells per arc, 90° phase advance per cell
 - 23x90: 23 cells per arc, 90° phase advance per cell

• Do they fulfil all HE-LHC requirements?

Parameter	Unit	18x90	23x90
Phase Advance per Cell	0	90	90
Cell Length	m	137.33	106.9
Dipoles per Cell	-	8	6
Dipole Length	m	13.94	13.83
Bending Angle per Dipole	٥	0.28	0.29
Filling Factor	-	0.81	0.78
Quadrupole Length	m	2.8	3.5
Quadrupole Strength	T/m	336	335
β_{max}/β_{min}	m	230/40	177/32
D _{max} /D _{min}	m	3.60/1.76	2.20/1.10
Momentum Compaction	10-4	5.84	3.54
Required Field for 27 TeV c.o.m.	Т	15.85	16.59
c.o.m. energy with 16 T Dipoles	TeV	27.24	26.01

- Studying various arc cell options lead to conclude on two baseline options
 - 18x90: 18 cells per arc, 90° phase advance per cell
 - 23x90: 23 cells per arc, 90° phase advance per cell
- Do they fulfil all HE-LHC requirements?
- Centre of mass energy: 27 TeV
 - 18x90: 27 TeV
 - 23x90: 26 TeV

Parameter	Unit	18x90	23x90
Phase Advance per Cell	o	90	90
Cell Length	m	137.33	106.9
Dipoles per Cell	-	8	6
Dipole Length	m	13.94	13.83
Bending Angle per Dipole	o	0.28	0.29
Filling Factor	-	0.81	0.78
Quadrupole Length	m	2.8	3.5
Quadrupole Strength	T/m	336	335
β_{max}/β_{min}	m	230/40	177/32
D _{max} /D _{min}	m	3.60/1.76	2.20/1.10
Momentum Compaction	10-4	5.84	3.54
Required Field for 27 TeV c.o.m.	т	15.85	16.59
c.o.m. energy with 16 T Dipoles	TeV	27.24	26.01

Geometry

EUROCIRCOL 17. OKT 2018

Geometry

• Small geometry offset to the LHC (< 3 cm)

Geometry

• Small geometry offset to the LHC (< 3 cm)

Transverse Offset [cm]

- 18x90: ≈ 9 cm
- 23x90: ≈ 1 cm
- Located in the first regular arc cell (part of dispersion suppressor)
- Result of different number and lengths of dipoles

EUROCIRCOL 17. OKT 2018

EUROCIRCOL 17. OKT 2018

• Beam Stay Clear > 10 sigma

Note: Values in mm R. Kersevan, FCC-hh design meeting Mar. 2018

MAD-X Input	Description	Unit	Value
APERTOL	Aperture Tolerances	mm	1, 1, 1
HALO	Halo Parameters	σ	6, 6, 6, 6
BBEAT	Beam Size Beating	-	1.05
DPARX	Frac. Hor. Paras. Disp.	-	0.14
DPARY	Frac. Ver. Paras. Disp.	-	0.14
COR	Closed Orbit Uncertainty	m	0.002
DP	Rel. Momentum Offset	-	0.0086

EUROCIRCOL 17. OKT 2018

- Beam Stay Clear > 10 sigma
- Larger for higher energy
 - 18x90: 800 GeV sufficient
 - 23x90: 600 GeV sufficient

Note: Values in mm R. Kersevan, FCC-hh design meeting Mar. 2018

MAD-X Input	Description	Unit	Value
APERTOL	Aperture Tolerances	mm	1, 1, 1
HALO	Halo Parameters	σ	6, 6, 6, 6
BBEAT	Beam Size Beating	-	1.05
DPARX	Frac. Hor. Paras. Disp.	-	0.14
DPARY	Frac. Ver. Paras. Disp.	-	0.14
COR	Closed Orbit Uncertainty	m	0.002
DP	Rel. Momentum Offset	-	0.0086

EUROCIRCOL 17. OKT 2018

- Beam Stay Clear > 10 sigma
- Larger for higher energy
 - 18x90: 800 GeV sufficient
 - 23x90: 600 GeV sufficient

Replacing half of the magnets with superconducting ones about 600 GeV reachable with the SPS

(already proposed 1972)

Note: Values in mm R. Kersevan, FCC-hh design meeting Mar. 2018

MAD-X Input	Description	Unit	Value
APERTOL	Aperture Tolerances	mm	1, 1, 1
HALO	Halo Parameters	σ	6, 6, 6, 6
BBEAT	Beam Size Beating	-	1.05
DPARX	Frac. Hor. Paras. Disp.	-	0.14
DPARY	Frac. Ver. Paras. Disp.	-	0.14
COR	Closed Orbit Uncertainty	m	0.002
DP	Rel. Momentum Offset	-	0.0086

EUROCIRCOL 17. OKT 2018

EUROCIRCOL 17. OKT 2018

EUROCIRCOL 17. OKT 2018

• Choose design with smaller cells \rightarrow more cells per arc

EUROCIRCOL 17. OKT 2018

• Choose design with smaller cells \rightarrow more cells per arc \rightarrow 32 cells per arc lead to

Beam stay clear > 10 σ

• Choose design with smaller cells \rightarrow more cells per arc \rightarrow 32 cells per arc lead to

EUROCIRCOL 17. OKT 2018

• Choose design with smaller cells \rightarrow more cells per arc \rightarrow 32 cells per arc lead to

Beam Stay Clear – Combined Function Dipoles

EUROCIRCOL 17. OKT 2018

Beam Stay Clear – Combined Function Dipoles

- Combined function dipoles
- Every dipole provides an additional quadrupole field \rightarrow b₂ component
- \bullet Assumption: different sign of b_2 in inner and outer aperture

Beam Stay Clear – Combined Function Dipoles

- Combined function dipoles
- Every dipole provides an additional quadrupole field \rightarrow b₂ component
- \bullet Assumption: different sign of b_2 in inner and outer aperture
- Best combination for both cells is shown here
 → two different dipole types

- 23x90:
 - 450 units of b2
 - 9.89 σ

- 18x90:
 - 500 units of b2
 - 9.62 σ

EUROCIRCOL 17. OKT 2018

• Enlargement of the beam screen

Current beam screen design

Note: Values in mm

• Enlargement of the beam screen

Current beam screen design

23x90: 10 % enlargement

Note: Values in mm

Note: Values in mm

EUROCIRCOL 17. OKT 2018

Enlargement of the beam screen

Beam Stay Clear – Bottlenecks

EUROCIRCOL 17. OKT 2018

Beam Stay Clear – Bottlenecks

- Optics functions have peaks in the IRs and DS
- Beam stay clear smaller than in a FODO cell
- Smallest beam stay clear at 450 GeV
 - 18x90: 5.5 σ in DS IR5
 - 23x90: 5.3 σ in DS IR4

Beam Stay Clear – Bottlenecks

- Optics functions have peaks in the IRs and DS
- Beam stay clear smaller than in a FODO cell
- Smallest beam stay clear at 450 GeV
 - 18x90: 5.5 σ in DS IR5
 - 23x90: 5.3 σ in DS IR4
- Local Problem
 - Small changes in dispersion suppressor
 - Improving optics

Outline

- Requirements of the HE-LHC
- Lattice Generation and Geometry Fitting
- Baseline Options
- Effect of Quadrupole Errors in the Main Dipoles
- Integrated Insertion Region Optics
- Conclusion and Outlook

EUROCIRCOL 17. OKT 2018

• Magnetic field of e.g. dipoles includes higher magnetic orders

• b_2 – component = quadrupole error

¹ S. Izquierdo Bermudez, private communication, Jan 2018 ² S. Izquierdo Bermudez, private communication, Oct 2018

- Magnetic field of e.g. dipoles includes higher magnetic orders
- b_2 component = quadrupole error
- Jan 2018: at collision energy b₂ = 46.840 units¹
 - Quadrupole exceeds limit of 360 T/m
 - Longer quadrupoles for correction
 - 23x90: Shorter dipoles, reduced c.o.m energy of 25.9 TeV
 - 18x90: no effect due to extra drift space in lattice

¹ S. Izquierdo Bermudez, private communication, Jan 2018 ² S. Izquierdo Bermudez, private communication, Oct 2018

- Magnetic field of e.g. dipoles includes higher magnetic orders
- b₂ component = quadrupole error
- Jan 2018: at collision energy b₂ = 46.840 units¹
 - Quadrupole exceeds limit of 360 T/m
 - Longer quadrupoles for correction
 - 23x90: Shorter dipoles, reduced c.o.m energy of 25.9 TeV
 - 18x90: no effect due to extra drift space in lattice
- Oct 2018: at collision energy b₂ = 0.025 units²
 - No effect on lattice

¹ S. Izquierdo Bermudez, private communication, Jan 2018 ² S. Izquierdo Bermudez, private communication, Oct 2018

Outline

- Requirements of the HE-LHC
- Lattice Generation and Geometry Fitting
- Baseline Options
- Effect of Quadrupole Errors in the Main Dipoles
- Integrated Insertion Region Optics
- Conclusion and Outlook

Experimental Insertion - Injection

• Injection: $\beta^* = 11 \text{ m}$

Experimental Insertion - Collision

• IR 1/5 by Léon van Riesen-Haupt is integrated

- Collision: $\beta^* = 0.45$ m
- Half crossing angle: 165 mrad

Radio Frequency

• IR4 by Pablo Mirave and Léon van Riesen-Haupt is integrated

 Contains additional quadrupoles compared to LHC IR4 helps tuning the ring

Injection Beam 1 and Experiment

• Taken from LHC

Beam 2

 β_x

 β_y

3.0

3.2

3.4

S [km]

3.0

2.5

2.0

1.5

1.0

0.5

0.0

3.8

3.6

-0.5

D [m]

D

400

350

300

250

200

150

100

50

0 2.8

 $\beta_x, \beta_y[m]$

Injection Beam 2 and Experiment

Beam 2 is injected in IR8

• Taken from LHC

Extraction

Brennan Goddard

Momentum Collimation

- Thys Risselada has already released a new IR
- \rightarrow integration in the next version

β Collimation

 Matthew Crouch and Thys Risselada have already released a new IR → integration in the next version

Outline

- Requirements of the HE-LHC
- Lattice Generation and Geometry Fitting
- Baseline Options
- Effect of Quadrupole Errors in the Main Dipoles
- Integrated Insertion Region Optics
- Conclusion and Outlook

Conclusion and Outlook

- Two baseline designs
 - 23x90: Offset 1 cm, 26 TeV c.o.m. energy
 - 18x90: Offset 9 cm, 27 TeV c.o.m. energy
- Sufficient beam stay clear reached if
 - Injection energy of 800 GeV/600 GeV for the 18x90/23x90 design
 - Choosing a different design with 32 cells per arc
 → below 25 TeV c.o.m. energy, bad geometry
 - Using combined function dipoles with at least 500 units/450 units for the 18x90/23x90 design
 - Scaling the beam screen by 22%/10% for the 18x90/23x90 design

- V0.5 optics ready to release
 - 18x90 and 23x90 designs
 - Injection and collision
 - Beam 1 and beam 2
 - Thick and thin
- Mitigate geometry offset of 18x90
- V0.6 including new IR3 and IR7 designs ongoing

• Current b_2 errors negligible \rightarrow no effect on designs

BACKUP SLIDES

Different Beam Screens (BS)

taken from FCC-hh

2018 2016 2017 31.65 31.55 29,6 27.65 7.5 24.44 4.1 26.4 48. 7.5 4 20 2,9 • 16.6 0A1 16.6 16.6 27.55 27.65 APERTURE = {0.015, 0.0132, 0.015, 0.015} Note: values in mm R. Kersevan, FCC-hh design meeting Mar. 2018 C. Garion, FCC Week Apr. 2016 I. Bellafont, EuroCirCol meeting Oct. 2017

EUROCIRCOL 17. OKT 2018

Required Dimensions (BS 2016)

- Horizontal aperture enlarged by 40%
- Vertical aperture enlarged by ≈ 24%

- Horizontal aperture enlarged by **20%**
- Vertical aperture enlarged by ≈ 17%

For small gain in beam stay clear (n1) it is enough to increase only the horizontal aperture; however at some point the vertical aperture needs to be enlarged as well to improve n1 further.

 \rightarrow It is not enough to increase only the horizontal dimensions of the beam pipe.

Beam Stay Clear Values at Injection Energies

Energy [GeV]	Beam Stay Clear [σ]		
	18x90	23x90	
450	7.51	8.78	
900	10.62	12.42	
1300	12.77	14.93	

