

Energy deposition from collision debris in FCC-hh EIR

Angelo Infantino, Barbara Larissa Humann, Francesco Cerutti

CERN EN-STI-BMI

FLUKA Team <u>With additional inputs from:</u> Roman Martin (BE-ABP-LAT)

Introduction

FLUKA model

Energy Deposition

Summary

From EuroCirCol 2017 to EuroCirCol 2018

A. Infantino

Apertures

TAS

- Length: 3.0 m
- Aperture: 34 mm diameter

Q1A and Q1B (MQXC)

- Magnetic Length/Field: 14.3 m 126 T/m gradient
- Aperture: 164 mm coil diameter 35 mm tungsten (INERMET180) shielding

Q2A to Q2D (MQXD)

- Magnetic Length/Field: 12.5 m 101 T/m gradient
- Aperture: 210 mm coil diameter 35 mm tungsten (INERMET180) shielding

Q3A and Q3B (MQXE)

- Magnetic Length/Field: 14.3 m 100 T/m gradient
- Aperture: 210 mm coil diameter 35 mm tungsten (INERMET180) shielding

Orbit Corrector(s) (MCBXDHV/CHV)

- Magnetic Length/Field: 1.3 m
- Aperture: 210 mm coil diameter 35 mm tungsten (INERMET180) shielding

D1A to D1D (MBXW)

- Magnetic Length/Field: 11.3 m 2.0 T field
- Aperture: 170 mm pole tip aperture 5 mm thick vacuum chamber

Apertures

TAN

- Length 5.0 m 4.0 m absorber
- Twin Apertures: 52 mm diameter
- Diverging beam pipes: 104.2 mm (s=407.8 m) and 106.9 mm (s=412.8 m)

D2A to D2D (MBRW)

- Magnetic Length/Field: 11.3 m 2.0 T field
- Aperture: **85 mm** pole tip aperture
- Parallel beam pipes with different beam separation distance in the modules

MCBRDV

- Magnetic Length/Field: 3 m 1.5 T field
- Aperture: **70 mm** coil diameter

Q4 (MQY)

- Magnetic Length/Field: 9.1 m 144 T/m gradient
- Aperture: 70 mm coil diameter

Q5/Q6 (MQYL)

- Magnetic Length/Field: 12.8 m 168/127 T/m gradient
- Aperture: 60 mm coil diameter

Q7 (MQM)

- Magnetic Length/Field: 14.3 m 320 T/m gradient
- Aperture: 50 mm coil diameter

Rectellipse beam screen

MQY.4RA.H1, APERTYPE=RECTELLIPSE, APERTURE={ 0.028900, 0.024000, 0.028900, 0.028900 }; MQYL.5RA.H1, APERTYPE=RECTELLIPSE, APERTURE={ 0.020000, 0.018200, 0.020000, 0.020000 }; MQYL.6RA.H1, APERTYPE=RECTELLIPSE, APERTURE={ 0.018200, 0.020000, 0.020000, 0.020000 }; MQM.A7RA.H1, APERTYPE=RECTELLIPSE, APERTURE={ 0.015000, 0.013200, 0.015000, 0.015000 };

{half width of rectangle, half height of rectangle, horizontal semi-axes of ellipse, vertical semi-axes of ellipse}

Collision Debris Power (FCC Week 2018)

Power Loss | Ultimate Instantaneous Luminosity 30.10³⁴ cm⁻² s⁻¹

Distance from IP [m]

Power Loss | Ultimate Instantaneous Luminosity 30.10³⁴ cm⁻² s⁻¹

🕅 🗛 A. Infantino

All value	<u>s in kW</u>	2018		2017		
Element	Cold Shielding	Cold Mass	Warm Mass	Cold Shielding	Cold Mass	Warm Mass
TAS			26.5			26.5
Q1A	4.6	0.78		4.7	0.78	
Q1B	13	1.92		12.6	1.89	
C1	0.06	0.06		0.06	0.06	
Q2A	1.53	0.32		1.47	0.22	
Q2B	0.7	0.09		0.77	0.11	
Q2C	4.6	0.63		4.54	0.61	
Q2D	5.93	0.81		6.4	0.89	
C2	0.51	0.05		0.71	0.08	
Q3A	6.02	0.77		5.38	0.71	
Q3B	7.8	0.95		7.57	0.93	
С3	0.94	0.17		0.87	0.15	

CERN

All value	<u>s in kW</u>	2018			2017	
Element	Cold Shielding	Cold Mass	Warm Mass	Cold Shielding	Cold Mass	Warm Mass
D1A			4.99			5.06
D1B			3.57			3.74
D1C			3.57			3.59
D1D			3.96			
TAXN			107			112
D2A			0.07			0.08
D2B			0.01			0.012
D2C			0.003			0.006
D2D			0.002			

All value	alues in kW 2018		2017			
Element	Cold Shielding	Cold Mass	Warm Mass	Cold Shielding	Cold Mass	Warm Mass
C4			0.017			
Q4		0.12				
Q5		1.01				
Q6		0.22				
Q7A		0.12				
Q7B		1.59				

Statistical uncertainty for the matching quadrupoles: 1-3%

FCC Week 2018 (Last Day Summary)

- Dipole cooling: 0.5 kW x 6 dipoles = 3kW
- Need of ~4x dipole cooling for the cooling of Q1 shielding -> 13kW

□ Active cross section (beam screen cooling channels) => 2 x 4 x 16.6=132.8 mm²

- ✓ Cylindrical capillary equivalent diameter => 15mm
- ✓ 0.8mm pipe wall thickness

Margin to Quench: Triplet (FCC Week 2018)

Q1-Q3 - Peak Power Density | Ultimate Instantaneous Luminosity 30.10³⁴ cm⁻² s⁻¹

<u>Note:</u> data with statistical uncertainty above 20% are not plotted

Distance from IP [m]

Energy deposition from collision debris in FCC-hh EIR 4th EuroCirCol Meeting, Karlsruhe, 17-18 October 2018.

Margin to Quench: Triplet

Q1-Q3 - Peak Power Density | Ultimate Instantaneous Luminosity 30.10³⁴ cm⁻² s⁻¹

Note: data with statistical uncertainty above 20% are not plotted

A. Infantino

Energy deposition from collision debris in FCC-hh EIR 4th EuroCirCol Meeting, Karlsruhe, 17-18 October 2018.

Margin to Quench: Q4-Q7

Q4-Q7 - Peak Power Density | Ultimate Instantaneous Luminosity 30.10³⁴ cm⁻² s⁻¹

Distance from IP [m]

Triplet Coil Insulator Lifetime (FCC Week 2018)

Q1-Q3 - Integrated dose | Ultimate Integrated Luminosity 30 ab⁻¹

Note: data with statistical uncertainty above 20% are not plotted

Distance from IP [m]

Triplet Coil Insulator Lifetime

Q1-Q3 - Integrated dose | Ultimate Integrated Luminosity 30 ab⁻¹

Distance from IP [m]

<u>Note:</u> data with statistical uncertainty above 20% are not plotted

Triplet Coil Insulator Lifetime

Triplet Coil Insulator Lifetime

OPTIMIZED Q1 SPLITTING

ancient layout example

idea by R. Martin (CERN BE-ABP)

2018 April 10th

FCC-hh accelerator: Design II

F. Cerutti

D1-D2 Coil insulator lifetime

D1 - Integrated dose | Ultimate Integrated Luminosity 30 ab⁻¹

Note: data with statistical uncertainty above 20% are not plotted

Q4-Q7 Coil insulator lifetime

Q4-Q7 - Integrated dose | Ultimate Integrated Luminosity 30 ab⁻¹

Distance from IP [m]

Q4-Q7 Coil insulator lifetime

Q4-Q7 Coil insulator lifetime

Take-Home Message:

TRIPLET

✓ No significant changes in the Triplet-D2 region from FCC Week 2018: the increase in the peak dose and power density is compatible with the increase of the crossing angle.

MATCHING SECTION

- ✓ Q5 and Q7b:
 - Severely impacted from collision debris;
 - ~1kW total power to be dissipated.
- ✓ Overall, all the matching quadrupoles will face a severe radiation environment: peak dose results, from a first evaluation, significantly above the design limits.
- ✓ The current study does not include any collimator (TCLs) or mask for this region: a careful design of a dedicated protection is therefore necessary.

Angelo Infantino

CERN EN-STI-BMI FLUKA Team - R2E Project angelo.infantino@cern.ch

www.cern.ch

D2 Coil insulator lifetime

D2 - Integrated dose | Ultimate Integrated Luminosity 30 ab⁻¹

Distance from IP [m]

Margin to Quench

L. Bottura, 11T Magnet Operating Margin:

"Expected MBH quench limits (Nb3Sn magnets) -> 100 mW/cm³ to 200 mW/cm³ localized peak loss for steady state beam losses"

Margin to Quench

Margin to Quench

A. Infantino