FCC-hh single beam stability

O. Boine-Frankenheim (for EuroCirCol Task 2.4)

S. Arsenyev, D. Schulte (CERN)
D. Astapovych, U. Niedermayer (TU Darmstadt)
V. Kornilov (GSI)
B. Riemann (TU Dortmund)
L. Mether, T. Pieloni, C. Tambasco (EPFL, Lausanne)

Updates on:
- Beam pipe impedance
- Beam stability estimates
- Electron cloud buildup estimates and scaling
- Other collective effects
Resistive wall impedance: LHC and FCC-hh

Growth rate: \(\tau^{-1} = \omega_0 \Im \Delta Q \) \hspace{1cm} \text{(Sacherer 1974)}

\[
\frac{1}{\tau_k} = -\frac{1}{1 + k} \frac{\omega_0 qMI_b}{4\pi E_0} \beta_y \Re Z_y (\omega_{\min}) F'_k (\omega_{\min} - \frac{\chi}{\tau_b})
\]

\(\chi = Q' \gamma_i \omega_0 \tau_b \)

(Chromatic phase shift)

\(\omega_{\min} = (n - Q_y) \omega_0 \)

(lowest sideband)

\(\chi = 0: \)

growth time at 3.3 TeV:
approx. 50 turns
at 50 TeV:
approx. 500 turns
LHC at 7 TeV:
approx. 2000 turns

\(Z_\perp (\omega) = (1 - i) \frac{c}{\pi \omega b^3 \delta \sigma} \)

(Thick) resistive wall impedance

Transverse impedances (vertical real part)

\[(n - Q)f_0 \]

FCC: kHz

LHC: few kHz
2D impedance code in frequency space

- Open source package FEniCS (A. Logg, K. Mardal, G. Wells et al.)
- Mesh from GMSH (C. Geuzaine, J. Remacle)

\[\nabla \times \mu^{-1} \nabla \times \mathbf{E} - \omega^2 \varepsilon \mathbf{E} = -i\omega \mathbf{J}_s \]

U. Niedermayer et al., Space charge and resistive wall impedance computation in the frequency domain using the finite element method, Phys. Rev. ST-AB 18, 032001, 2015

BeamlImpedance2D (PYTHON): https://bitbucket.org/uniederm/beamimpedance2d.git
FCC pipe: Vertical vs Horizontal

Design Cu coating (d=0.3/0.1 mm)

'Full' Cu coating (d=0.3/0.1 mm)

Design vs Full: Increased horizontal impedance

\[
R_{x,y} \propto (n - Q) f_0
\]

\[
T \propto \frac{1}{f_0^b}
\]
\[Z_{x,k}^{\text{eff}} = \sum_{p} \langle \hat{\beta}_x \rangle | \Delta_k (\omega_p - \omega_\xi) |^2 \]

\[R \quad Q_{k=0} \approx Q_s \quad Q_s = \frac{E}{t^2_0 E_{0,b}} \]
(tune shift)
(synchrotron tune)

TMCI threshold bunch intensity:

\[N_{th}^{b} \approx \frac{4}{e^2} \frac{E}{\sum_{y} Z_{y,0}^{\text{eff}}} \]

Fully Cu coated: \[\frac{N_{th}^{b}}{N_b} \approx 6 \]

Partially Cu coated: \[\frac{N_{th}^{b}}{N_b} \approx 3 \]
FCC pipe: a-C coating

Pipe with a-C coating (1 μm)

Remark: For an SEY of about 1 the coating can be much thinner, for example only 30 nm. P.Pinto (CERN)
HTS coated FCC screen

Hybrid coating (HTS stripes):
- Possible reduction of the resistive wall instability growth rates by factor 5-6.
- TMCI thresholds!

Impedance contributions and database

\[Z_{\text{eff}}^{x,k} = \sum_p \beta_x Z_x (\omega_p) \left| \Delta_k (\omega_p - \omega_\xi) \right|^2 \frac{\langle \hat{\beta}_x \rangle \left| \Delta_k (\omega_p - \omega_\xi) \right|^2}{\left(\Delta_k (\omega_p - \omega_\xi) \right)^2} \]

\(\Delta_k (\omega) \): Spectrum of head-tail modes

Example: Coupled bunch instability

-26 MΩ/m 100%
-104 MΩ/m
-1054 MΩ/m
-145 MΩ/m
-403 MΩ/m
-1804 MΩ/m

Example: TMCI

\(\leq 0.1 \text{ MΩ/m} \)
\(2.4 \text{ MΩ/m} \)
\(1.8 \text{ MΩ/m} \)
\(0.4 \text{ MΩ/m} \)
\(1.3 \text{ MΩ/m} \)
\(3.8 \text{ MΩ/m} \)

\(46.4 \text{ MΩ/m} \)

S. Arsenyev (IPAC 18)
Beam stability: LHC vs FCC

Growth rate for transverse coupled bunch instabilities:

\[\mu \frac{q^2 N_b}{m l_{bb}} Z \]

TMCI single bunch threshold bunch intensity:

\[N_{th}^b = \frac{4 E}{\gamma^2 \sqrt{2 \tilde{\gamma} Z_{y,0}^{\text{eff}}}} \]

- Larger circumference (5:1) -> lower frequency: **1 kHz vs 8 kHz**
- Smaller screen diameter (2:3) -> **larger impedance** (factor 3)
- Screen temperature: 50 K (5:2), maximum field 16 T (2:1) -> **changed conductivities**
- Larger average \(\beta \)-function (2:1) -> **growth rates**
- Smaller beams (1:3) -> weaker **Landau damping, e-cloud thresholds**
- LHC-like bunches and 25 ns spacing (1:1)
Space charge in the FCC ?

\[Q_{sc} \propto \frac{q^2 N_b}{b_{n,y}} \]

(space charge tune shift)

\[Q_s = \frac{E}{2 t} \]

(synchrotron tune shift)

\[\frac{Q_k}{Q_s} \approx \frac{1}{2} \frac{Q_{sc}}{Q_s} + k \]

with

\[\frac{Q_{sc}}{Q_s} \propto \frac{2}{E} \]

\[\Delta Q_k = Q_k - Q_0 = -\frac{\Delta Q_{sc}}{2} \pm \sqrt{(\Delta Q_{sc} / 2)^2 + (k Q_s)^2} \]

Head-tail tune shift with space charge:
Multibunch mode coupling vs Sacherer's formula

Klinkenberg, Arsenyev, Schulte
Landau damping of head-tail modes

Head-tail modes (including the k=0 mode) are not rigid-bunch modes:

Particle tracking with octupoles and resistive wall wake.
Landau damping with octupoles: Results of particle tracking

- Octupoles provide a similar stabilization for higher-order modes
- The 2D “rigid-bunch” dispersion relation can be applied to “non-rigid” modes
- Octupoles: reliable well-understood damping mechanism
- For k>0: fewer octupoles needed (lower growth rates)
- The k=0 mode will be stabilized by feedback systems.

V. Kornilov
Landau damping: Electron lenses

Tune shift: \(\Delta Q_x^e(J_x, J_y) \approx 2\Delta Q_e (1 - a J_x - a J_y) \)

\[\Delta Q_x^e(J_x, J_y) = 2\Delta Q_e \int_0^{1/2} \frac{I_0(\tilde{J}_x u) - I_1(\tilde{J}_x u)}{\exp(\tilde{J}_x u + \tilde{J}_y u)} I_0(\tilde{J}_y u) \, du \]

Electron lenses

Proof of principle experiment in LHC required!

Example: One lens (l=2 m, \(I_e = 1 \text{ A} \)) in LHC would provide a tune spread similar to the 168 octupoles.

V. Shiltsev et al., PRL (2017)

Injection energy

T. Pieloni, C. Tambasco (2018)
Electron cloud buildup and scaling

Example from openE CLOUD:
Saturated e-cloud density in FCC drift section without a-C coating

Questions (to the simulations):
- Minimum a-C coated area
- Scaling of buildup / heat-load with beam energy (and pipe radius)

Scaling with pipe radius.

Scaling with beam energy (beam radius):
A new gridless ecloud-code code has been developed!
Summary and outlook

- Impedance contributions and database
- Landau damping and requirements: Octupoles and electron lens
- Electron cloud buildup thresholds (SEY requirements)

-> CDR input

To do:

- Role of mode coupling for coupled bunches in FCC
- Proof of principle experiments with electron lenses
- Electron cloud and other sources of tune shifts: Beam stability

-
Backup
Stability with octupoles: FCC top energy

\[I_{\text{oct}}^F = +500 \text{ A} \]
\[I_{\text{oct}}^D = +500 \text{ A} \]

\[\Delta Q_{\text{coh}} - \text{Damping as in LHC:} \]
\[3554 \text{ LHC-octupoles.} \]
\[508 \text{ Advanced-technology octupoles.} \]

V.Kornilov
Octupoles and Landau damping

Tune shifts from octupoles:

$$\Delta Q_x = a_x J_x - b_{xy} J_y$$
$$\Delta Q_y = a_y J_y - b_{xy} J_x$$

($J_{x,y}$: actions variables)

Scaling with energy:

$$\Rightarrow N_{oct} L_m \propto E_0^2$$

From LHC to FCC-hh: $7^2 \times 168$ octupoles

$E_0 = \gamma_0 mc^2$

L_m: length of magnet

N_{oct}: # of magnets

2D dispersion relation [1-3]:

$$1 = \Delta Q_{coh} \int \frac{1}{\Delta Q_{oct} - \Omega/\omega_0} J_x \frac{\partial \psi_\perp}{\partial J_x} dJ_x dJ_y$$

2D beam distribution:

$$\psi_\perp (J_x, J_y) = e^{-(J_x + J_y)}$$

rms tune spread:

$$\delta Q_{x,y} = \langle \Delta Q_{x,y} (J_x, J_y) \rangle$$

$$| \Delta Q | \lesssim \delta Q$$

$$\tau^{-1} = \omega_0 \mathcal{S} \Delta Q$$

Very approximate stability condition
Finite chromaticity

Example case $Q'=15$: the growth rates for the $k=0$ coupled bunch mode would be lower by a factor 0.6, but the $k=1$ mode would be present in addition (growth rate corresponding to 650 turns at injection).

(Sacherer 1974)
Landau damping: Scaling with energy

The good news: \[\frac{1}{\tau} \propto \frac{1}{E_0} \] (instability growth rate)

The OK news: \[\delta Q_{oct} \approx (\omega_0 \tau)^{-1} \propto \frac{L}{E_0} \] (tune spread required for LD)

The bad news: \[\delta Q_{oct} \approx N_{oct} L_m \frac{\varepsilon}{E_0^2} \] (tune spread provided by octupoles)

\[E_0 = \gamma_0 mc^2 \]

\(L \): circumference

\(L_m \): length of magnet

\(N_{oct} \): # of magnets

\(\varepsilon \): normalized emittance

\[\Rightarrow N_{oct} L_m \propto E_0^2 \]

From LHC to FCC-hh: \(7^2 \times 168 \) octupoles
Landau damping: Possible alternative schemes

FCC-hh: Active feedback for \(k=0 \) modes, Landau damping for \(k>1 \).
Still, additional Landau damping concepts are helpful!

LHC: 10 x larger stability area then with octupoles

\[
\Delta Q_{\text{max}} = 0.01
\]
\[
l_e = 2 \text{ m}
\]
\[
I_e = 0.8 \text{ A}
\]

\[
\Delta Q_{x,y}(z) = \pm \frac{q\hat{\beta}_{x,y}k^{(2)}}{4\pi m\gamma_0} \cos \left(\frac{\omega_{rf} z}{c} + \phi \right)
\]
\[
\delta Q_{x,y} \propto J_z \quad \text{(longitudinal action)}
\]

No local spread (in \(z \))!
Dispersion relation and Landau damping?

Detailed particle tracking studies are ongoing (see also V. Kornilov).

Shiltsev et al, PRL 2017

\[
\Delta Q_{\text{max}} = 0.01
\]
\[
l_e = 2 \text{ m}
\]
\[
I_e = 0.8 \text{ A}
\]

Radio-Frequency Quadrupole (RFQ)

Grudiev PRAB 2014
Schenk et al, IPAC17

\[
\Delta Q_{x,y}(z) = \pm \frac{q\hat{\beta}_{x,y}k^{(2)}}{4\pi m\gamma_0} \cos \left(\frac{\omega_{rf} z}{c} + \phi \right)
\]
\[
\delta Q_{x,y} \propto J_z \quad \text{(longitudinal action)}
\]

No local spread (in \(z \))!
Dispersion relation and Landau damping?

Detailed particle tracking studies are ongoing (see also V. Kornilov).
Electron cloud: Tune shift and relativistic limit

Tune shift induced by the pinch along the bunch

\[\Delta Q_x(z) = \frac{r_p L b_y}{\gamma_0 (b_x + b_y)} \bar{\rho} \lambda_z(z) \]

\[\bar{\rho} \approx \frac{E_s}{\pi m_e c^2 r_e b^2} \]

(b: pipe radius)

Furman, Zholents, PAC 1999
Petrov, Boine-Frankenheim, PRAB 2014

Tune shift potentially effects Landau damping (see for example Burov 2013).

Electron space charge field \(\mathbf{E} \) and instability thresholds in the **ultrarelativistic limit** \(\alpha \to 0 \)

\[\rho_b(r, z) \to \delta(r) \lambda(z) \]

\[\epsilon_0 \nabla \cdot \mathbf{E} = \rho_e \]

\[\omega_e = \frac{\sqrt{\lambda_b r_e c^2}}{a} \to \infty \]

D. Astapovych