

ECC block option

Maria Durante

on behalf of Michel Segreti, Chhon Pes, Etienne Rochepault and Clément Lorin

4 th ECC Annual meeting – WP5 meeting - 17/10/2018 Karlsruhe

- Design version v4ari250 : inter-beam 250
- 2D magnetic design
- **Harmonics**
- Persistent currents
- Random geometrical errors
- 3D magnetic design
- 2D mechanical design
- 3D mechanical design (ongoing)

v4ari250 : inter-beam 250

v4ari250

High field strand diameter: 1.1 mm (for procurement reason) Heat treatment dimensional change:

+1% width ; +3% thickness

Bore thickness: 1.9 mm

including 0.5 mm thick ground insulation

Inter-beam distance: 250 mm

Yoke outer diameter: 616 mm

Space for He cooling 2xDN106 + 4xDN32

20 mm SS-shell

Coldmass outer diameter target : 800 mm

250 mm inter-beam 616 yoke outer diameter 72 mm Al shell + 20 mm SS shell 800 total outer diameter

2D magnetic design main parameters

** Area x 4578 dipoles x 14.3 m x 8.7 kg/m³

 $**$ Estimated by ROXIE, but in fact > 14 % (14.67 %) 10/17/2018 4th ECC Annual meeting

Eurocircol

 $|B|$ (T)

16.73 15.85 14.97 14.09 13.21 12.33 11.45 10.57 9.697 8.817 7.937 7.058 6.178 5.299 4.419 3.540 2.660 1.781 0.901 0.021

125

v4ari250

Harmonic content

EuroCirCol

Persistent currents

Current cycle: $0 A \rightarrow 10176 A$ (first ramp up, pre-cycle) $\rightarrow 100 A$ (first ramp down, pre-cycle) \rightarrow 10176 A (second ramp up) \rightarrow 100 A (second ramp down)

Calculations at the reference radius = 16.67 mm (i.e. at 2/3 of the aperture radius) in the right aperture i.e. at $x = 125$ mm

Injection at 3.3 TeV i.e. at 16 T x 3.3 / 50 = 1.056 T (corresponding to **531 A** for the v4ari250 magnetic model)

Persistent currents

EuroCirCol

Random geometric errors

v4ari250

• Modeling of random geometric errors with ROXIE

Results for rms of 50 µm Results for rms of 100 µm

• Calculations with Opera are ongoing

3D magnetic design - Assumptions

- Assumptions:
	- Return ends 1000 mm straight section
	- Hardway bend : Rmin = 450 mm in upper layer ($w = 12.6$ mm)
		- Strain 13.8 mm/m (HD2: 30.6 mm/m HD3: 12.4 mm/m Fresca2: 15.3 mm/m)
	- Coil-to-aperture y-direction: 5 mm
	- Double pancake end

3D Magnetic Design – Options

Compact:

- → Minimum conductor length Long:
- Coil ends to the shortest
- Room in the spacers for internal joints
- b3 compensated in the SS

- **Extension of coil ends**
- Compensation of the b3 in the ends

3D Magnetic Design – Options

- **Short ends**
- **Low harmonics**
- 10/17/2018 **10/17/2018 10/17/2018 10.6 T)** Page 12

3D Magnetic Design main parameters

2D Mechanical model - Bladder inflation

ANSYS MODEL V4ari250 with outer yoke Ø = 616 mm

72 mm thick Al shell

3 horizontal bladders: 1800 µm for 1600 µm 1 vertical bladder: 330 µm for 100 µm No 20 mm thick SS shell for bladder inflation \rightarrow peak von Mises stress in coil < 100 MPa

ANSYS MODEL V4ari250 with outer yoke Ø = 616 mm

72 mm thick Al shell + 20 mm thick SS shell 2 horizontal keys \rightarrow 412 μ m + 1185 μ m \leftarrow Vertical keys 100 µm **↓**

Imposed displacement on SS shell bottom: -0.2 mm

Contacts/symmetry:

- Bonded: inside the coils, with the poles
- Separation allowed with 0.2 friction: between the coils, with the structure
- $\frac{1}{4}$ of the structure

Stress distribution - Coils

EuroCirCol

 (AVG)

 $-.612E + 08$

 $-0.406E + 08$
 $-0.199E + 08$
768458

 (AVG)

- 167E+09
- 634E+07
- 241E+08
- 598E+08
- 598E+08
- 776E+08
- 113E+09
- 113E+09
- 113E+09
- 149E+09
- 167E+09

 \sim α

 $\overline{\mathcal{L}}$

$\sigma_{\rm x}$ at coil / pole interface

LEFT RIGHT

Von Mises stress distribution – Ti Poles

EuroCirCol

Eurocircol Von Mises stress distribution – Y pusher

Stress distribution – Iron Y-pad

Cold – 4.2 K 16 T

= 631E+09
487242
705E+08
141E+09
211E+09
281E+09
421E+09
421E+09
561E+09
561E+09
561E+09

.186E+08
.373E+08
.559E+08
.745E+08
.931E+08

 $.112E + 09$
 $.130E + 09$

149E+09
168E+09

Key + SS shell

EuroCirCol

von Mises

Keys

Sigma I

Stress distribution – Iron X-pad

EuroCirCol

Stress distribution - Yoke

Key + SS shell

Azimuthal stress distribution – Al shell

Key + SS shell Cold – 4.2 K 16 T ANSYS Release 19

Build 19.0

PLOT NO.

NODAL SOLUTION

STEP=3

TIME=3

PLOT

SY

SY

SY

CAVG) ANSYS Release 19
Build 19.0
PLOT NO. 1
NODAL SOLUTION ANSYS Release 19
Build 19.0
PLOT NO. 1 NODAL SOLUTION NODAL SOLUTION
SUB =1
TIME=1
TIME=1
SY
POWerGraphics
POWerGraphics
EFACET=1
NURS=Mat $\begin{array}{l} \text{STEP=2} \\ \text{SUB =1} \\ \text{TIME=2} \\ \text{SY} \end{array}$ (AVG) (AVG) NSYS=1
PowerGraphics
EFACET=1 RSYS=1
PowerGraphics EFACET= AVRES=Mat
DMX = 001163 AVRES=Mat AVRES=Mat $DMX = .988E-03$
SMN = $-.442E+08$
SMX = $.165E+09$ $DMX = .001226$
 $SMN = .399E+08$ SMN = .510E+08
SMX = .280E+09
510E+08 $SMX = .299E+09$
.399E+08 $.442E + 08$.765E+08
102E+09
127E+09 $.209E + 08$ $.688E + 08$.231E+07 $.976E + 08$ $.255E + 08$ $.126E + 09$.233E+08
.720E+08
.720E+08
.952E+08
.142E+09
.165E+09 153E+09 $.155E + 09$ - 184E+09
- 213E+09
- 242E+09
- 270E+09
- 299E+09 $.178E + 09$
 $.204E + 09$.229E+09
254E+09
280E+09 Keys Cool-down Nominal field 165 MPa 280 MPa $\sqrt{}$ 280 MPa $\sqrt{}$ 299 MPa

EuroCirCol

σθ

Azimuthal stress distribution – SS Shell

Eurocircol

3D Mechanical design (ongoing)

EuroCirCol

- Comparison between 2D and 3D ω z = 0 results
- Impact of the SS length on coil-ends results
	- 1 m and 2 m SS models
- Axial stress
- 3D Mechanical design :
	- End-shoe/end plate interference,
	- x interference increase,

needed to keep end shoe and end plate in contact

Conclusion for the magnetic design

- A 3D double aperture electromagnetic model has been developed by optimizing the field quality and the magnetic and physical lengths (coil ends as short as possible)
- Persistent current is taken into account with ROXIE 2D
- A random geometric errors analysis with ROXIE has been realized
	- Calculations results with Opera are foreseen soon
- As the block coil is the same than for the v2ari194 model presented last year, we assume that Hotspot and Voltage to ground remain below the limit

- Investigation of a double aperture 2D mechanical design with 250 mm inter-beam distance, @ 16 T
- Total outer diameter of 800 mm (SS shell outer diameter)
- Bladder pressure of 59 MPa in operation
- Peak stress in $Nb₃$ Sn coil below the limit
- Peak stress in the horizontal iron components above the limit at warm (key contact with lateral yoke and horizontal pad)
- Almost operational Ansys 3D model

Thanks for your attention

Random geometric errors

Inputs for ROXIE 2D for rms of 100 μ m and 50 μ m

v4ari250

Material properties (Davide 3rd FCC week)

Coil maximum stress

- @ 4.2 K: 200 MPa
- @ 300 K: 150 MPa

*Ferromagnetic iron @ 4.2 K stress < 380 MPa in tension (1st principal stress)

Synthesis of 2D mechanical designs

Interbeam distance = 204 mm $\boldsymbol{\phi}_{ext}$ **iron yoke = 570 mm Total** $\boldsymbol{\phi}_{ext}$ **= 744 mm** 67 + 20 mm thick shells \rightarrow 2 x 720 µm \leftarrow

Interbeam distance = 250 mm $\boldsymbol{\emptyset}_{\text{ext}}$ iron yoke = 616 mm **Total** $\boldsymbol{\phi}_{ext}$ **= 800 mm** 72 + 20 mm thick shells \rightarrow 412 µm + 1185 µm \leftarrow

