

ECC block option

Maria Durante

on behalf of Michel Segreti, Chhon Pes, Etienne Rochepault and Clément Lorin

4th ECC Annual meeting – WP5 meeting - 17/10/2018 Karlsruhe

- Design version v4ari250 : inter-beam 250
- 2D magnetic design
- Harmonics
- Persistent currents
- Random geometrical errors
- 3D magnetic design
- 2D mechanical design
- 3D mechanical design (ongoing)

v4ari250 : inter-beam 250

v4ari250

High field strand diameter: 1.1 mm (for procurement reason) Heat treatment dimensional change:

+1% width ; +3% thickness

Bore thickness: 1.9 mm

including 0.5 mm thick ground insulation

Inter-beam distance: 250 mm

Yoke outer diameter: 616 mm

Space for He cooling 2xDN106 + 4xDN32

20 mm SS-shell

Coldmass outer diameter target : 800 mm

250 mm inter-beam 616 yoke outer diameter 72 mm Al shell + 20 mm SS shell 800 total outer diameter

2D magnetic design main parameters

Parameter	v5ari204	v4ari250	Unit
Inom	10.111	10.176	kA
Nb turns	5+10+21+22	5+10+21+22	-
Bore thickness	1.9 (1.4 + 0.5)	1.9 (1.4 + 0.5)	mm
Mid-plane shim	2.28	2.07	mm
Conductor area	138	138	cm²
Estimated weight*	7.90	7.90	kt
Yoke diameter	570	616	mm
Bcenter	16.00	16.00	т
Bpeak	16.75	16.73	Т
Load-line margin (ROXIE)	13.75**	13.73**	%
Diff. inductance	49.1	47.8	mH/m

** Area x 4578 dipoles x 14.3 m x 8.7 kg/m³

** Estimated by ROXIE, but in fact > 14 % (14.67 %)

|B| (T)

4th ECC Annual meeting

125

Strand diameter1.10.7mmNumber of strands2134adimUnreacted width12.4712.47mmUnreacted thickness1.941.23mm
Number of strands2134adimUnreacted width12.4712.47mmUnreacted thickness1.941.23mm
Unreacted width12.4712.47mmUnreacted thickness1.941.23mm
Unreacted thickness 1.94 1.23 mm
Reacted width 12.6 12.6 mm
Reacted thickness2.001.27mm
Copper/non-Copper ratio0.82.0adim
Insulation thickness 0.15 0.15 mm
Bare cable compaction11.812.0%
Packing factor 85.4 88.2 %
Transposition pitch 93 93 mm

v4ari250

Harmonic content

EurCirCol

Persistent currents

Current cycle: $0 \land \rightarrow 10176 \land (first ramp up, pre-cycle) \rightarrow 100 \land (first ramp down, pre-cycle) \rightarrow 10176 \land (second ramp up) \rightarrow 100 \land (second ramp down)$

Calculations at the reference radius = 16.67 mm (i.e. at 2/3 of the aperture radius) in the right aperture i.e. at x = 125 mm

Injection at 3.3 TeV i.e. at 16 T x 3.3 / 50 = 1.056 T (corresponding to 531 A for the v4ari250 magnetic model)

Persistent currents

b9 = -2.40 units at injection

Euro CirCo

Random geometric errors

v4ari250

• Modeling of random geometric errors with ROXIE

Results for rms of 50 μm

Results for rms of 100 μm

• Calculations with Opera are ongoing

3D magnetic design - Assumptions

- Assumptions:
 - Return ends 1000 mm straight section
 - Hardway bend : Rmin = 450 mm in upper layer (w = 12.6 mm)
 - Strain 13.8 mm/m (HD2: 30.6 mm/m HD3: 12.4 mm/m Fresca2: 15.3 mm/m)
 - Coil-to-aperture y-direction: 5 mm
 - Double pancake end

3D Magnetic Design – Options

Compact:

- \rightarrow Minimum conductor length
- Coil ends to the shortest
- Room in the spacers for internal joints
- b3 compensated in the SS

Long:

- Extension of coil ends
- Compensation of the b3 in the ends

3D Magnetic Design – Options

Parameter	Compact	Compact compensated	Long	Unit
b3 integrated	-4.59	-3.00	0.08	units
Midplane shim	2.35	2.28	2.35	mm
B _{peak} 1, z=0	16.60	16.60	16.60	т
B _{peak} 2, HW bend	15.94	15.94	15.99	Т
B _{peak} 3, tip	15.03	15.03	15.23	Т
$L_{straight}$ section	500	500	500	mm (half length)
L _{iron}	500	500	500	mm (half length)
L _{coil}	722	722	813	mm (half length)
L _{mag}	642	642	678	mm (half length)
L _{coil end} = L _{coil} - L _{mag}	80	80	135	mm (per end)

Page 12

Baselin	າຍ
---------	----

- Short ends
- Low harmonics
- Margin (ΔB_{peak} > 0.6 T)

10/17/2018

3D Magnetic Design main parameters

ANSYS MODEL V4ari250 with outer yoke Ø = 616 mm

72 mm thick Al shell

3 horizontal bladders: 1800 μm for 1600 μm 1 vertical bladder: 330 μm for 100 μm No 20 mm thick SS shell for bladder inflation

 \rightarrow peak von Mises stress in coil < 100 MPa

ANSYS MODEL V4ari250 with outer yoke Ø = 616 mm

72 mm thick Al shell + 20 mm thick SS shell 2 horizontal keys \rightarrow 412 µm + 1185 µm \leftarrow Vertical keys 100 µm \checkmark

Imposed displacement on SS shell bottom: -0.2 mm

Contacts/symmetry:

- Bonded: inside the coils, with the poles
- Separation allowed with 0.2 friction: between the coils, with the structure
- ¼ of the structure

Stress distribution - Coils

4th ECC Annual meeting +165 MPa

Cool-down

Cold – 4.2 K

16 T

+167 MPa

LEFT

(Eur CirCo

RIGHT

10/17/2018

Von Mises stress distribution – Ti Poles

POLE	293 K	4.3 K
Ti 6Al 4V	800	1650

EuroCirCol

A key to New Physic

EuroCirCol Von Mises stress distribution – Y pusher

PUSHER	293 K	4.3 K
SS 316 LN	350	1050

Stress distribution – Iron Y-pad

Cold – 4.2 K

Key + SS shell

EuroCirCol

16 T

von Mises

Keys

Stress distribution – Iron X-pad

Key + SS shell Cold – 4.2 K 16 T ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION STEP=3 SUB =1 TIME=3 SEQV (AVG) Decomposition ANSYS Release 19 Build 19.0 PLOT_NO.__1 ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =1 TIME=2 SEQV (AVG) NODAL SOLUTION STEP=1 SUB =1 TIME=1 SEQV (AVG) PowerGraphics PowerGraphics PowerGraphics EFACET=1 AVRES=Mat EFACET=1 AVRES=Mat EFACET=1 AVRES=Mat DMX =.906E-03 DMX =.191E-03 DMX =.001006 DYM =.906E-03 SYM =4655.11 542E+09 4655.11 542E+08 .108E+09 .163E+09 .217E+09 .217E+09 .225E+09 .379E+09 .379E+09 SMN =2368.76 SMX =.324E+09 SMN =4860.05 SMX =.475E+09 =.475E+09 4860.05 .527E+08 .105E+09 .158E+09 .211E+09 .264E+09 .316E+09 .369E+09 .422E+09 256E+08 .511E+08 .767E+08 .102E+09 .128E+09 .153E+09 .179E+09 .204E+09 .230E+09 .434E+09 .475E+09 .488E+09 Nominal field Keys Cool-down 324 MPa 🗶 475 MPa 488 MPa ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION STEP=2 SUB =1 TIME=2 S1 STEP=3 SUB =1 TIME=3 S1 (AVG) (AVG) PowerGraphics PowerGraphics EFACET=1 AVRES=Mat DMX =.001006 SMX =.137E+09 EFACET=1 AVRES=Mat DMX =.906E-03 SMX =.189E+09 0 0 .152E+08 .304E+08 .456E+08 .609E+08 .210E+08 .420E+08 .629E+08 .839E+08 .761E+08 .913E+08 .106E+09 .105E+09 .126E+09 PADS 293 K 4.3 K .147E+09 .122E+09 .137E+09 .168E+09 .189E+09 **Ferromagnetic iron** 230 720* *σ₁ < 380 MPa Nominal field Cool-down 4th ECC Annual meeting 137 MPa 10/17/2018 21 189 MPa

EuroCirCol

von Mises

Sigma

Stress distribution - Yoke

Key + SS shell

720*

*σ₁ < 380 MPa

230

Cold – 4.2 K

16 T

ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION

NUDAL SOLUTION STEP=3 SUB =1 TIME=3 SEQV (AVG) PowerGraphics EFACET=1 NUDEC Mat

AVRES=Mat DMX =.859E-03 SMN =586.754 SMX =.759E+09 586.754 .842E+08

.169E+09 .253E+09 .337E+09 .422E+09 .506E+09 .590E+09

.674E+09 .759E+09

ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION

PowerGraphics EFACET=1 AVRES=Mat

DMX =.859E-03 SMX =.358E+09

> .397E+08 .795E+08 .119E+09 .159E+09 .199E+09

.238E+09 .278E+09 .318E+09 .358E+09

22

(AVG)

STEP=3 SUB =1 TIME=3 S1

von Mises

Ferromagnetic iron

Azimuthal stress distribution – Al shell

Key + SS shell Cold – 4.2 K 16 T ANSYS Release 19 ANSYS Release 19 ANSYS Release 19 Build 19.0 PLOT NO. 1 NODAL SOLUTION Build 19.0 PLOT NO. 1 NODAL SOLUTION AUSIS RELEASE I Build 19.0 PLOT NO. 1 NODAL SOLUTION STEP=3 SUB =1 TIME=3 SY (AVG) NODAL SOLUTION STEP=1 SUB =1 TIME=1 SY (AVG) RSYS=1 PowerGraphics EFACET=1 MUPES=Mat STEP=2 SUB =1 TIME=2 SY (AVG) (AVG) RSYS=1 PowerGraphics EFACET=1 RSYS=1 PowerGraphics EFACET=1 AVRES=Mat DMX =.001226 SMN =.399E+08 AVRES=Mat AVRES=Mat DMX = .988E-03 SMN = .442E+08 SMX = .165E+09 DMX =.001163 SMN =.510E+08 SMX =.280E+09 .510E+08 SMX =.299E+09 .442E+08 .399E+08 .765E+08 .102E+09 .127E+09 .209E+08 .688E+0 231E+07 .976E+08 .255E+08 .2352+08 .488E+08 .720E+08 .952E+08 .118E+09 .142E+09 .165E+09 .155E+09 .184E+09 .213E+09 .153E+09 .178E+09 .204E+09 .229E+09 .254E+09 .280E+09 .242E+09 .270E+09 .299E+09 Keys Cool-down Nominal field 280 MPa 🗸 299 MPa 165 MPa 🗸

AI SHELL	293 K	4.3 K
AI 7075	480	690

gθ

Euro CirCol

Azimuthal stress distribution – SS Shell

SS SHELL	293 K	4.3 K
SS 316 LN	350	1050

Euro CirCol

3D Mechanical design (ongoing)

EuroCirCol

- Comparison between 2D and 3D @ z = 0 results
- Impact of the SS length on coil-ends results
 - 1 m and 2 m SS models
- Axial stress
- 3D Mechanical design :
 - End-shoe/end plate interference,
 - x interference increase,

needed to keep end shoe and end plate in contact

Conclusion for the magnetic design

- A 3D double aperture electromagnetic model has been developed by optimizing the field quality and the magnetic and physical lengths (coil ends as short as possible)
- Persistent current is taken into account with ROXIE 2D
- A random geometric errors analysis with ROXIE has been realized
 - Calculations results with Opera are foreseen soon
- As the block coil is the same than for the v2ari194 model presented last year, we assume that Hotspot and Voltage to ground remain below the limit

- Investigation of a double aperture 2D mechanical design with 250 mm inter-beam distance, @ 16 T
- Total outer diameter of 800 mm (SS shell outer diameter)
- Bladder pressure of 59 MPa in operation
- Peak stress in Nb₃Sn coil below the limit
- Peak stress in the horizontal iron components above the limit at warm (key contact with lateral yoke and horizontal pad)
- Almost operational Ansys 3D model

Thanks for your attention

Random geometric errors

v4ari250

Inputs for ROXIE 2D for rms of 100 μm and 50 μm

rms of 100 µm Block1HF Block1LF Block2HF Block2LF Block3HF Block3LF Block4HF Block4LF 26.800 38.300 26.800 38.300 13.730 36.730 13.730 36.730 xI 27.000 38.500 27.000 13.930 36.930 13.930 36.930 (mm) 38.500 xu 26.900 38.400 26.900 38.400 <mark>13.830</mark> 36.830 13.830 36.830 14.870 14.870 28.270 28.270 41.670 41.670 55.070 55.070 xI I٧ 15.070 15.070 41.870 41.870 55.270 55.270 (mm) 28.470 28.470 xu 14.970 14.970 28.370 28.370 41.770 41.770 55.170 55.170 xs Inclination xL -91.2789 -91.2789 -91.2789 -91.2789 -91.2789 -91.2789 -91.2789 -91.2789 angle (deg) -88.7211 -88.7211 -88.7211 -88.7211 -88.7211 -88.7211 -88.7211 -88.7211 xu -90.0000 -90.0000 -90.0000 -90.0000 -90.0000 -90.0000 -90.0000 -90.0000 XS

rms of 50 µm		Block1HF	Block1LF	Block2HF	Block2LF	Block3HF	Block3LF	Block4HF	Block4LF
х	хI	26.850	38.350	26.850	38.350	13.780	36.780	13.780	36.780
(mm)	xu	26.950	38.450	26.950	38.450	13.880	36.880	13.880	36.880
	xs	26.900	38.400	26.900	38.400	13.830	36.830	13.830	36.830
Y	хI	14.920	14.920	28.320	28.320	41.720	41.720	55.120	55.120
(mm)	xu	15.020	15.020	28.420	28.420	41.820	41.820	55.220	55.220
	xs	14.970	14.970	28.370	28.370	41.770	41.770	55.170	55.170
Inclination	хI	-90.6395	-90.6395	-90.6395	-90.6395	-90.6395	-90.6395	-90.6395	-90.6395
angle (deg)	xu	-89.3605	-89.3605	-89.3605	-89.3605	-89.3605	-89.3605	-89.3605	-89.3605
	xs	-90.0000	-90.0000	-90.0000	-90.0000	-90.0000	-90.0000	-90.0000	-90.0000

Material properties (Davide 3rd FCC week)

Coil maximum stress

- @ 4.2 K: 200 MPa
- @ 300 K: 150 MPa

Material	R _{p 0.2} [MPa]	
	293 K	4.3 K
AI 7075	480	690
SS 316 LN	350	1050
NITRONIC 40	350	1240
Ferromagnetic iron	230	720*
Ti 6Al 4V	800	1650

Material	E [GPa]		pr	(L _{4.3K} - L _{293K})/L _{293K}
	293 K	4.3 K	293K/4.3K	293 K -> 4.3K
Coil	EX = 25 EY = 30 GXY = 21	EX = 27.5 EY = 33 GXY = 21	0.3	X = 3.36e-3 Y = 3.08e-3
StSt	193	210	0.28	2.84e-3
Iron	213	224	0.28	1.97e-3
Aluminum	70	79	0.34	4.2e-3
Titanium	115	126.5	0.3	1.74e-3
Nitronic 40	210	225	0.28	2.6e-3

*Ferromagnetic iron @ 4.2 K stress < 380 MPa in tension (1st principal stress)

4th ECC Annual meeting

EuroCirCol

10/17/2018

Interbeam distance = 204 mm ϕ_{ext} iron yoke = 570 mm Total $Ø_{ext}$ = 744 mm 67 + 20 mm thick shells → 2 x 720 µm ←

	σ_x max	σ Von Mises max
Keys + SS shell	-148	137
Cool-down	-181	160
Energization 16 T	-199	177

Interbeam distance = 250 mm $Ø_{\text{ext}}$ iron yoke = 616 mm Total ϕ_{ext} = 800 mm 72 + 20 mm thick shells → 412 µm + 1185 µm ←

	σ_X max	σ Von Mises max
Keys + SS shell	-147	136
Cool-down	-180	165
Energization 16 T	-185	167

32