

- B. Auchmann CERN/PSI, R. Felder PSI, J. Gao PSI, G. Montenero PSI, S. Sanfilippo PSI, S. Sidorov PSI, L. Brouwer LBNL, S. Caspi LBNL
- Status of the CCT @ PSI

- CCT @ FCC
- SC Magnet Lab @ PSI
- CD1 Manufacturing trials

- CCT @ FCC
- SC Magnet Lab @ PSI
- CD1 Manufacturing trials

EuroCirCol Designs

Cos-theta

INFN
Influto Nazionale
di Fisica Nucleare

Block coil

Canted Cosine Theta

Common coils

PSI's CCT Design for FCC

Current: 18135 A

Layer #	n _s	diam [mm]	cuNc	loadline marg. [%]	current marg. [%]	T _{peak} [K]	V _{grnd} [V]	J _{cu} [A/mm²]
1	29	1.2	0.8	14.2	111	292	1133	1237
2	25	1.2	1.1	14.4	95	342	1264	1217
3	22	1.2	1.95	14.4	74	310	1156	1096
4	20	1.2	2.6	15.7	70	338	1144	1103

• Optimize J_e optimal winding angle, minimal spars, and ribs, wide cable.

• FCC-wide conductor use: 9.7 kt

Total inductance: 19.2 mH/m

• Total energy: 3.2 MJ/m

 Opportunity to reduce unit length and peak voltage to ground via double-helix.

3-D Magnetic Design

3-D modeling results:

- Yoke cut-back not needed (20 mT peak-field enhancement in ends).
- Magnetic length with yoke equal to that of bare coil.
- **Physical length** minus magn. length = 53 cm; equal to 11 T magnet.
- Peak field minus main field at 16-T bore field: 0.14 T excluding self field.
 - comparable or lower than cos-theta due to continuous current distribution.

Courtesy M. Negrazus

2D Mechanical Design – Room Temperature

- here displacement constraint (0.9 mm, total 1.8 mm weld shrinkage).
- equivalent to 350 MPa pressure constraint (SS limit).

2D Mechanical Design – Cool-Down

2D Mechanical Design – 16 T

Al-bronze tensile strength measurements after HT under way. Final former material depends on manufacturing process. Ideally Ti.

3-D Periodic Simulation

- Generalized plane stress condition applied (following D. Arbelaez, L. Brouwer, LBNL)
- Initial 3-D results confirm 2D, but show distinct imprint of scissors lams
 - → increase protective shell thickness, change its material to iron
 - → decrease lamination thickness.

Courtesy G. Rolando

Persistent Currents

- First-of-a-kind CCT persistentcurrent simulation assuming axial current-flow like in any
 2-D electromagnetic simulation.
- Similar order of magnitude as other designs.

- b_2 correction (-26 to -16 units) by winding-path modification.
 - 25%-reduction in rib bottom thickness.
 - Chamfering/stepping of channel bottom may be required (could also be used to enhance efficiency).
 - Further FQ tuning is possible.

Main Field = 16.0015 T

	an	bn
1	-0.458577	10 000.
2	1.46377	-16.9835
3	0.197922	9.41813
4	-0.518893	0.113957
5	0.0145285	2.37396
6	0.675784	-0.202357
7	-0.0930704	-0.985619
8	-0.53873	0.0595043
9	0.0626084	0.295271
10	0.293446	-0.0128189

Quench Simulation for CCT

• CLIQ sim. on CD1 geometry in final debugging stage.

• 4-layer FCC CCT to follow.

081609

- CCT @ FCC
- SC Magnet Lab @ PSI
- CD1 Manufacturing trials

CHART-PSI Goals towards FCC Requirements

 Goal: Demonstrate key technological features of an efficient 16-T CCT in two-layer technology model magnets.

- Exterior mechanical structure
- Fast quench detection and CLIQ protection.
- Wide Rutherford cable.
- Inclined channels.
- Improved resin mix.

Ribs

CHART (Swiss Accelerator Research and Technology Center) – Magnet Activities

PAUL SCHERRER INSTITUT PSI SC Magnet Lab

Reaction Commissioning

- Furnace fully operational (Ar supply, water chiller, ventilation, electricity, DAQ).
- Loading tooling complete and tested.
- Reaction of 5-turn test former complete.
- Short-sample confirmation by UniGE not before ASC.
- First coil reaction expected for Week 44.

Reaction Furnace Trimming

All plateau axial maps within +/- 3 K.

Impregnation Infrastructure

Vacuum vessel with feed-throughs in bottom part.

50 m³/h vacuum pump with LN₂ trap

N₂ bottle for over-pressure and purging.

Control and powering units with voltage selection

Heated "green-house"

Heated feed-throughs into the vessel

See-through mixing pot

DAQ and alarm PCs

Capacitive monitoring as level indicator

Box oven for ingredient heating, sample and waste curing

Impregnation Commissioning

- 5-turn coil impregnation.
- Coil temperatures (Top, Center, Down, Heater) within 3 K at curing plateaus.

- CCT @ FCC
- SC Magnet Lab @ PSI
- CD1 Manufacturing trials

- OL winds easily and without cable popping up (see below).
- IL has tendency to pop up from the channels.
- Cable keepers were designed, tested, and printed in steel for the CD1 IL.

5-Turn Reaction

- Overshoots of loop temperatures diminish with temperature.
- Back-side probes arrive on
 - 210°C reached 6-7 hours after WSP out of 72 h on plateau.
 - 400°C reached 3 hours after WSP out of 48 h on plateau.
 - 665°C reached 50 min after WSP out of 50 h on plateau.

Layer/Layer Interface

- ANSYS simulation of the full magnet model suggest shear stresses on a bonded layer/layer interface are too high to confidently glue.
- PSI solution: implement a dedicated sliding plane, inspired by MSUT (H. ten Kate et al.).

Sliding Plane Installation

- ANSYS simulation of the full magnet model suggest shear stresses on a bonded layer/layer interface are too high to confidently glue.
- PSI solution: implement a dedicated sliding plane, inspired by MSUT (H. ten Kate et al.).

5-Turn Sample Preparation, CD1 Mold

Impregnation Results

• Some potential bubbles visible.

• Next step: improve control of injection flow rate via peristaltic pump.

• Microscopic analysis – note glass wrap layers, inner and outer sliding planes, soldering, and filling of assembly gap with resin.

• Separation of layers post impregnation – sliding planes in action:

Mechanical Instrumentation and Assembly

• Mechanical model test in Dec. 2017.

- Coil winding to start Monday.
- Reaction cycle to launch Friday.
- Splice testing during reaction week.
- Coil manufacturing until end of 2018.
- Mechanical assembly and instrumentation early 2019.
- Magnet test in LBNL by April 2019.

- FCC magnet design:
 - Compliant with FQ requirements.
 - Persistent-current simulations now available also for CCT.
 - Quench simulation (CLIQ with ANSYS) under preparation.
- Significant progress in infrastructure at PSI.
 - Commissioning complete.
- Technology model magnet CD1:
 - Part design, procurement, QA complete.
 - Coil manufacturing start imminent.

 Hopefully important lessons from CCT5 and CD1 tests for FCC week 2019.