

1

with inputs from:

Tiina Salmi for the magnet protection (TUT), Jerome Fleiter for the cable sizing (CERN)

EuroCirCol Annual Meeting, 17 oct 2018, Karlsruhe Institut of Technology

Since FCC week

- FCC week:
 - 353 T/m; magnet protection not properly checked; cable dimension not heat-treated
 - cable: 40 x 0.7 mm
- First set of iterations after FCC week:
 - cable heat-treatment (w+1%; t+3%); protection check performed by Tiina (TUT);
 >360 T/m (Optics baseline: 360 T/m, 2592 T integrated)
 - 42/43 x 0.7 mm
 - Some iterations about cable dimensions (Jerome Fleiter (CERN) and Ian Pong (LBNL))
- Second set of iterations after FCC week:
 - cable heat-treated; 35 x 0.85 mm, G > 360 T/m

Cable parameters

Cable parameter	Units	MQXF	v12
Strand diameter	mm	0.85	0.85
Cu/NonCu	-	1.2 ± 0.1	1.65
Nb of strands	-	40	35
Cable bare width (before/after HT)	mm	18.15/18.363	15.956/16.120
Cable bare mid-thick.(before/after HT)	mm	1.525/1.594	1.493/1.538*
Cable bare thinness (before/after HT)	mm	1.462/1.530	1.438/1.481*
Cable bare thickness (before/after HT)	mm	1.588/1.658	1.549/1.585*
Cable width expansion	%	1.2	1.0**
Cable thickness expansion	%	4.5	3.0**
Keystone	0	0.40	0.40
Transposition pitch length	mm	109	96
Insulation thickness per side (5 MPa)	μm	145 ± 5	150

*Compaction based on MQXF RRP 0.55° keystone extra slide 15 **EuroCirCol guesstimation J_c see extra slide 12 (EuroCirCol)

Magnet design

10.52 9.975

9.428 8.881

8.334 7.787

7.240 6.694

6.147 5.600

5.053 4.506

3.959 3.412

2.865 2.318

1.771 1.224

0.677

0.130

*Lorin C. et al, Design of a Nb₃Sn 400 T/m quadrupole for the future circular collider, IEEE TAS, 4004905, (2018)

|B| (T) Units 400 T/m* v12 Magnet parameter Gradient T/m 400 367.4 Nominal current 12285 А 22500 Peak field Т 12.12 10.52 Peak field / (Radius x Gradient) 1.212 1.146 -% 14 Loadline margin 20.0 Κ 4.6 Temp magin _ Inductance (2 ap.) mH/m 2.04 17.9 Stored energy (2 ap.) kJ/m 1397 520 Azimuthal force (per $\frac{1}{2}$ coil) (1st + 2nd layers) MN/m 3.53 1.74 (0.81+0.93) Radial force (per ½ coil) MN/m 1.58 0.78 Fx (per ½ coil) MN/m 1.100 -Fy (per ½ coil) MN/m 1.620 _ Midplane shim 300 325 μm Hotspot (total delay) Inom Κ 307 (40 ms) 300 (30 ms) Nb of turns per layer 9+12+16+19 = 56 8 + 10 = 18 -Area of conductor cm² 124.2 57.2 Total weight (same integrated gradient 2592 T) 541 272 tonnes Magnetic length 6.48 7.06 m

Harmonics contents

Current ramp-up after preparation cycle

Random positioning

*QXF cable is made with a strand of 0.85 mm in diameter, too - Simon Hopkins et al., *The FCC conductor development programme*, 4th FCC week, Amsterdam 9th-13th April 2018 **Ballarino A., Bottura L., *Targets for R&D on Nb3Sn conductor for High Energy Physics*, IEEE TAS, 6000906, (2015)

Mechanical model

Double pancake glued (dark area) Sliding contact elsewhere (without separation)

Mechanical properties:

Material	E [GPA] / 293 K	E [GPA] / 4.2 K	Pr	(L4.3K – L293K)/L293K
Nb ₃ Sn	30	33	0.3	3.4e-3*
Ероху	5	8	0.34	6.0e-3
13RM19 (steel)	200**	210*	0.28*	2.7e-3**
DISCUP (copper)	96***	96	0.3	3.3e-3

*Tommasini D. et al. <u>https://indico.cern.ch/event/556692/contributions/2591664/</u> 3rd FCC week Berlin, 2017 + EuroCirCol meeting **Lanza C., Perini D., Characteristics of the austenitic steels used in the LHC main dipoles, MT17, 24-28 September 2001, Geneva ***Scheuerlein et al, *Mechanical properties of the HL-LHC 11 T Nb3Sn magnet constituent materials*, IEEE TAS, 4003007, (2017)

Peak stress in the coil

<u>Goal:</u>

CERN

good coil-pole contact at nominal (< -5 MPa)

Azimuthal stress in the Nb₃Sn blocks of the coil

Collaring	Collaring - 10% creep*	Cold	Powering
peak / average	peak / average	peak / average	peak / average
-101.5 / -85.5	-91.4 / -76.9	-88.5 / -73.2	-111.1 / -69.7
	The pole cou	ld be even more loaded	

*Felix Wolf : "Strong creep behavior starting at 125 MPa" in Effect of transverse stress applied during reaction heat treatment on the stiffness of Nb3Sn Rutherford cable stacks, <u>https://indico.cern.ch/event/743626/contributions/3154023</u>
7

Elasto-plastic model for collar

• Collar steel: 13RM19 (LHC quad steel)

CERN

• Yield strength of the collars $\sigma_{0.2} = 440 \text{ MPa}^*$

*Lanza C., Perini D., Characteristics of the austenitic steels used in the LHC main dipoles, MT17, 24-28 September 2001, Geneva **Bertinelli F., et al., Production of austenitic steel for the LHC superconducting dipole magnets, IEEE TAS, vol 16, no 2, (2006) (for information YUS130 S for LHC dipoles**)

MECHANICAL PROPERTIES AT ROOM TEMPERATURE							
Grade	σ _{0.2} [MPa]	σ _R [MPa]	A ₅	E [GPa]	HBS 5/750		
13RM19	440	800	52%	200	260		
20-7 MN	460	795	50%	183	234		
YUS 130 S	445	795	53%	194	250		
Hyform 200 mod.	390	763	54%	188	277		
KHMN	320	630	67%	186	220		

Azimuthal stress in the Nb₃Sn blocks of the coil

Collarin	ng l	Elasto Plastic model	
peak	/	average	
-111.6	/	-86.5	
Collarin	ng I	Elastic model	
Collarir peak	ng I /	Elastic model average	

- Work under progress at TUT* (Tiina Salmi)
- Assuming a 21 ms delay (detection+validation+triggering)
- A single CLIQ unit (500 V, 50 mF)
- Preliminary hotspot temperature at nominal ~300 K and a peak voltage of 500 V
- More in Tiina's talk, and more to come in the coming weeks

- Infu

MPa SCAL (MPa)

- Emag
 - 2D model
 - 35 MQXF-like strands cable (geometry)
 - 20-55 μ m filament FCC J_c target:
 - 367 T/m gradient at nominal
- Protection (preliminary)
 - protection ~300 K with 21 ms delay before CLIQ firing
 - 500 V to ground (CLIQ unit voltage)
- Mechanics
 - 2D model
 - Collar structure
 - Creep of 10 % after collaring
 - Yield strength of collar 440 MPa
 - Peak stress at room temperature 115 MPa max
- Next steps
 - working out end spacer geometry (3D roxie)
 - Extrapolated the geometry to the wider MQXF cable (40 strands instead of 35 strands) to test the windability...since no 35 strand cable available.
 - 3D model with OPERA

13.

$$\begin{cases} J_c = \frac{C(t)}{B} b^{0.5} (1-b)^2 \\ B_{c2}(T) = B_{c20}(1-t^{1.52}) \\ C(t) = C_0(1-t^{1.52})^{\alpha} (1-t^2) \end{cases}$$

 $\lambda \alpha$

where $t = T/T_{c0}$ and $b = B/B_{c2}(t)$ with *B* the magnetic flux density on the conductors. $T_{c0} = 16$ K, $B_{c20} = 29.38$ T, $\alpha = 0.96$, $C_0 = 275880$ AT/mm² are fitting parameters computed from the analysis of measurements on the conductor. The cabling degradation is assumed to be 3%.

- Strand diameter: 0.7 mm or 0.9 mm
- Nb of strands: 40-51-60
- Protection delay: 30 ms or 40 ms

Protection: 40 to 30 ms (Hotspot = 350 K)

- + 20 T/m on the gradient (~5%)
- 2 layers efficiency:

CERN

- Lower than ~51 strands
- Worry about windability (50 mm aperture)
 - Windability test with MBH 11 T cable or MQXF cable would be welcome

Various 35 strands cable versions are proposed, they match the thin edge compaction of HL-LHC RRP cables. The cable is based on 0.85 mm MQXF strand, as 0.7 mm 11T strands are extruded from the same billets as MQXF strands, 11T cables can be used as reference, too.

based on MQXF 0.4°

	based on MQXF 0.4°						10 m
		MQX	(F 0.4°	v	11		10
width		18.15 mm		15.956 mm			10 JA
	mid	1.525 mm	10.3%	1.518 mm	10.7%		Ľ
thin		1.462 mm	14.0%	1.462 mm	14%		e al
	тніск	1.588 mm	6.6%	1.574 mm	7.4%		*0/
keystone		0.4°		0.4°			×

based on MOXF 0.55°

based on 11T 0.79°

		11T 0.79°		v13		v13 bis	
width		14.70 mm		15.956 mm		15.956 mm	
	mid	1.250 mm	10.7%	1.451 mm	14.6%	1.506 mm	11.4%
thin		1.150 mm	17.9%	1.395 mm	17.9%	1.395 mm	17.9%
	ТНІСК	1.352 mm	3.4%	1.507 mm	11.4%	1.618 mm	4.9%
keystone		0.79°		0.4°		0.8°	

Geometry from Roxie to Cast3m: Aand B

CÉRN

Cea

MAXIMUM LOADLINE IN B	3LOCK 18 (%)	79.9305
MINIMUM TEMPERATURE M	ARGIN IN BLOCK 6 (T)	4.6287

HARMONIC ANALYSIS NUMBER	1
MAIN HARMONIC	2
REFERENCE RADIUS (mm)	16.7000
X-POSITION OF THE HARMONIC COIL (mm)	125.0000
Y-POSITION OF THE HARMONIC COIL (mm)	0.0000
MEASUREMENT TYPEALL FIELD (CONTRIBUTIONS
ERROR OF HARMONIC ANALYSIS OF Br	0.2251E-02
SUM (Br(p) - SUM (An cos(np) + Bn sin(np))	

MAIN FI	IELD (T)		 -6.136412
MAGNET	STRENGTH	(T/(m^(n-1))	 -367.4498

NORMAL RELATIVE MULTIPOLES (1.D-4):

b 1:	-0.64653	b 2:	10000.00000	b 3:	0.05803
b 4:	0.02041	b 5:	-0.01971	b 6:	0.27404
b 7:	-0.00836	b 8:	-0.00785	b 9:	0.01070
b10:	-0.27522	b11:	0.00194	b12:	0.00331
b13:	-0.00308	b14:	-0.17019	b15:	-0.00011
b16:	-0.00100	b17:	0.00065	b18:	-0.20609
b19:	-0.00008	b20:	0.00024	b	