

Vacuum stability at cryogenic temperature

WP4 - Activity at LNF Karlsruhe, 17/10/2018

Luisa Spallino, Marco Angelucci, Rosanna Larciprete and Roberto Cimino

EuroCircol Meeting in Karlsruhe

Summary of the main activities

- Dose calibration
- Temperature calibration
- Ar TPD measurements: data analysis and results

CH₄ and CO TPD measurements

Macuum stability at cryogenic temperature

Working Pressure (<10⁻¹¹ mbar)

Beam screen Temperature Range

2

Saturated vapour pressure from Honig and Hook (1960) (C2H6 Thibault et al.)

Independently on the substrate treatment, the vacuum stability due to the desorption of

residual contaminant gases has to be guaranteed

Karlsruhe 17/10/18

EuroCirCol

LHC

Synchrotron Radiation

Power = 0.13 W/m

FCC

Synchrotron Radiation

Power = 40 W/m

Temperature/Pressure

Variation

Beam life Time

acuum stability at cryogenic temperature

Our task

Study of adsorption/desorption behaviour of typical contaminant gases in accelerators near their critical temperatures as a function of the surface morphology

Set-up and Strategy at LNF

UrOrrCol

1.2 те (10⁻⁷

0.8

40

20

Secondary **Electron Yield** (SEY) measurements Equipment : Electron gun, Faraday cup

Dose calibration

5

Gas dosing

Karlsruhe 17/10/18

Near to the sample

6

Karlsruhe 17/10/18

Different local pressure on the sample

1s@1.33x10⁻⁶ mbar corresponds to

Far from the sample

Near to the sample

Importance of dosing near the sample

✓ Putting the doser near the sample is effective for the reduction of the desorption related to the manipulator

Karlsruhe 17/10/18

urCirCol

Luisa Spallino

Coverage calibration by SEY

<u>Accurate</u> <u>Calibration in</u> <u>progress</u>

9

EuroCirCol

Coverage calibration by SEY

uroCirCol

Coverage calibration by SEY

✓ Nominal 4L and 16L of Ar dosed in chamber correspond to a coverage of ~25L and ~ 100L on the sample surface

J. Cazaux et al.; Phys. Rev. B, 71 (2005)

E₀(eV)

11

From here on, calibrated coverages are given

Karlsruhe 17/10/18

CirCol

LNF-Cryogenic Manipulator

Measured Temperature

Karlsruhe 17/10/18

Luisa Spallino

Measured Temperature (T*) Measured Temperature \neq Sample Real Temperature (T)

Temperature Programmed Desorption

The different desorption peaks are experimental artefact

TPD of 50L CO on poly-Cu

Luisa Spallino

Peak 1: Desorption from sample ("hotter part" at T*)

Peak 2: Desorption from Manipulator (at T)

Karlsruhe 17/10/18

Fig. 1. Argon desorption spectra for increasing argon exposures onto various underlying "substrates": (a) clean Ni(111); (b) saturated chemisorbed $(\sqrt{7} \times \sqrt{7})$ R19.1[°] benzene layer on Ni(111); (c) saturated first physisorbed benzene layer on top of the chemisorbed layer. Adsorption temperature 22 K; heating the 1 K/s. The "substrates" are schematically indicated above the corresponding TPD spectra.

M. Stichler et al.; Surface Science 348 (1996)

Same Desorption temperature of Argon Thick Film (TF) on different substrates

Ar TF desorbs at a unique T~30 K

From literature, CO and CH₄TF desorb at T~30 K a T~37 K respectively

J. A. Noble et al., Mon. Not. R. Astron. Soc., 421 (2012)
R. S. Smith et al., J. Phys. Chem. B, 120 (2016)
T. Suhasaria et al., Mon. Not. R. Astron. Soc., 472 (2017)

16

Karlsruhe 17/10/18

uroCirCol

CirCol

Istituto Nazionale di

60

Ar TPD measurements: data analysis and results

Synopsys of the raw data

Karlsruhe 17/10/18

uroCirCol

Luisa Spallino

Final Ar TPD results

Poster presentation at the FCC Week 2018 and talk presentation at EuroCirCol Meeting in Amsterdam

Oral presentation at the e-Cloud 18 in Isola d'Elba

2 publications in preparation: one regular article and the e-Cloud 18 proceeding

Final Ar TPD results

- On flat Cu Ar adsorbs due to the weak Ar-Cu and Ar-Ar Van der Waals interactions and the desorption curve consists of the sharp peak at T~30 K.
- For the LASE-Cu substrate the Ar adsorption energy at the undercoordinated surface defect sites increases and desorption occurs at higher T. However, at high coverage, multilayer desorption at T~30 K is also observed.

www.rsc.org/pccp | Physical Chemistry Chemical Physics

Luisa Spallino

Xe interacting with porous silicon

Assaf Paldor,^a Gil Toker,^a Yigal Lilach^b and Micha Asscher^{*a}

Received 17th December 2009, Accepted 29th March 2010 First published as an Advance Article on the web 30th April 2010 DOI: 10.1039/b926692e

Karlsruhe 17/10/18

Desorption from pore depth Ζ

High temperature TPD peak

Due to the wide distribution of the binding energy of the adsorption sites and multiple desorption-readsorption cycles on the inner pore walls

EuroCircol Meeting in Karlsruhe

✓ Temperature calibration✓ Coverage calibration

CO and CH₄ thermal desorption measurements: preliminary results

22

Karlsruhe 17/10/18

EuroCirCol A key to New Physics

CO TPD Measurements

On flat Cu CO adsorbs due to the weak CO-Cu and CO-CO Van der Waals interactions and the desorption curve consists of the sharp peak at T~30 K.

INFN

Istituto Nazionale di Fisica

CO TPD Measurements

urcirCol

- On flat Cu CO adsorbs due to the weak CO-Cu and CO-CO Van der Waals interactions and the desorption curve consists of the sharp peak at T~30 K.
- For the LASE-Cu substrate the CO adsorption energy at the undercoordinated surface defect sites increases and desorption occurs at higher T. However, at high coverage, multilayer desorption at T~30 K is also observed.

CO TPD Measurements

Karlsruhe 17/10/18

CH₄ TPD Measurements

Luisa Spallino

On flat Cu CH₄ adsorbs due to the weak CH₄-Cu and CH₄-CH₄ Van der Waals interactions and the desorption curve consists of the sharp peak at T~39 K.

LINER I Size Auclear

Karlsruhe 17/10/18

CH₄ TPD Measurements

Luisa Spallino

- On flat Cu CH₄ adsorbs due to the weak CH₄-Cu and CH₄-CH₄ Van der Waals interactions and the desorption curve consists of the sharp peak at T~39 K.
- For the LASE-Cu substrate the CH₄ adsorption energy at the undercoordinated surface defect sites increases and desorption occurs mainly at higher T. However, on increasing the coverage, the multilayer desorption at T~39 K also increases.

CH₄ TPD Measurements

✓ The TPD results here reported confirm that what has been observed for Ar is a general trend common to some specific gases present as contaminant in accelerators

Gases dosed on poly-Cu substrate

Normalization to the TPD curve area at the lower coverage

Highly porous and inhomogeneous surface with nanometric features (undercoordinated surface defect sites)

Morphology of LASE-Cu by SEM (G. Viviani @ LNF-INFN) LASE-Cu can accommodate a larger quantity of gas so as expected by its morphology

31

Karlsruhe 17/10/18

32

R=(Ar on LASE-Cu TPD Curve Area)/(Ar on poly-Cu TPD Curve Area)

This trend accounts for the desorption (and adsorption) kinetics of the gas in the LASE-Cu substrate determined by its morphology

Ubiquitous P2 contribution spreading in a broad temperature range

Gradually occupation of all available adsorption sites (pores wall included), up to saturation and ice thickening also on top surface

33

Karlsruhe 17/10/18

JroCirCol

Luisa Spallino

letituto Nazionalo di Ficio

Implication for FCC-hh Vacuum Stability

Saturated vapour pressure from Honig and Hook (1960)

Wide desorption contribution over 40 K due to the morphological structuring of the material (intrinsic broad distribution of adsorbing defective sites and pores)

Karlsruhe 17/10/18

Implication for FCC-hh Vacuum Stability

WARNING!

This could render very difficult to find a temperature interval for the LASE-type sample here studied where vacuum stability could be granted for all the molecular species composing the residual gas in the beam pipe components

Outlook and future work

Conclusion

• The use of this typo of LASE-substrate could be a problem for vacuum stability issues

Outlook

- <u>Electron and photo-desorption investigations</u>
- Better estimate of the consequences of such distributed temperature desorption via gas dynamic studies in real machines
- Optimization of LASE and SEY mitigation studies to optimize a material which is compliant both for SEY reduction and for vacuum stability
 - Improve synergies between the different studies
 - Long work: to be performed during EUROCIRCOL2?

Karlsruhe 17/10/18

Luisa Spallino

E. La Francesca R. Cimino R. Larciprete A. Liedl L. Spallino M. Angelucci

The low temperature team at LNF

DADNE-L Team: M. Pietropaoli and G. Viviani

37

A SUPPORTING PROJECT FUNDED BY INFN-SNC5

Karlsruhe 17/10/18

uroCirCol