



#### **HE-LHC IR energy deposition simulations**

#### Jose L. Abelleira, L. Van Riesen-Haupt, Emilia Cruz Alaniz (JAI-Oxford) Thanks to J. Keintzel (CERN), F. Cerutti, M. Varasteh (CERN FLUKA team)

17 October 2018





#### **Contents**

- HE-LHC IR
- Triplet quadrupoles
- Separation Dipoles: D1, D2
- TAN
- Full ring modelling







## **HE-LHC IR**, horizontal



- Complete IR design: quadrupoles, separation dipoles.
- Beam separation 250 mm.
- Beta\*=0.45 m.

#### 'Alternative IR for FCC-hh and HE-LHC IR', Leon Van Riesen Haupt

Euro CirCol A key to New Physics

### **HE-LHC IR, vertical**



JAI

**HE-LHC IR energy deposition simulations** 

Imperial College



Dose

### **Triplet quads**

#### See Eurocircol 17 (Amsterdam) : 'IR1/5 radiation shielding', J.L. Abelleira Updated plots for beta\*=0.45 m:



Power



Eurocircol 2018, Karlsruhe, Germany

HE-LHC IR energy deposition simulations

Imperial College





• Strong bending required: SC and long magnets







- FLUKA model based on FCC arc dipole, valid for the purpose of calculating peak dose.
- Coil radius: 8 cm.
- B=9.7 T.
- 2.15 cm of shielding.



7ΛI



- Shielding needed to protect the coils (2.15 cm).
- Peak dose reduced from 100 MGy (0.5 cm shielding).

**Eur**CirCol

**Royal Holloway** 

OXFORD





- FLUKA TAN model modified from the FCC-hh.
- Adapted to the 25-cm beam separation.





5 m





- FLUKA model based on the FCC-hh arc dipole (straight).
- Coil radius: 3.85 cm.
- Magnetic field: 7.7 T.







- Excessive dose.
- More shielding? not with this scheme.
- Another solution needed.











#### • Solution 1: Eccentric shielding













Eurocircol 2018, Karlsruhe, Germany

**HE-LHC IR energy deposition simulations** 

Imperial College

OXFORD 12



Peak dose reduced with this shielding.



EuroCirCol

#### Solution 2: Split dipole with different beam separations



• Not as good solution as the eccentric dipole



EuroCirCol





|                     | simple | eccentric | split |      |
|---------------------|--------|-----------|-------|------|
| Coil r [cm]         | 3.85   | 3.85      | 3.75  | 3.75 |
| Center position[cm] | 11.6   | 11.6      | 11.4  | 12.2 |
| Shielding [cm]      | 0.9    | 0.9/1.8   | 1.1   | 1.4  |
| Inner r [cm]        | 2.6    | 2.5       | 2.3   | 2.0  |
| Peak dose [MGy]     | 100    | 40        | 70    |      |





# Full ring model

- Line from IP to DS being modelled with line builder to simulate energy deposition from diffractive proton losses.
- Twiss files already provided (J. Keintzel).
- Arc dipoles: SBEND with 25-cm beam separation.
- Quadrupoles need to be adapted to the new optics.



#### SBEND (M. Varasteh, CERN FLUKA team)



 $\mathcal{A}$ i



### **Conclusions**

- Full design of the HE-LHC presented: quads, dipole separators, TAN.
- Dipole separator parameters are presented, seem feasible (t.b.c. by magnet group).
- Energy deposition studies for D1 indicate that shielding is required.
- Simulations indicate that shielding is required for D2, with an eccentric shielding.
- Arc dipole ready, quadrupole model required to finish the line from IP to DS for diffractive proton losses in the DS.

