
HTCondor Administration

Basics

Greg Thain

Center for High Throughput Computing

› HTCondor Architecture Overview

› Configuration and other nightmares

› Setting up a personal condor

› Setting up distributed condor

› Minor topics

Overview

2

› Jobs

› Machines

Two Big HTCondor Abstractions

3

execute

execute

execute

Life cycle of HTCondor Job

4

Idle Xfer In Running Complete

Held

Xfer out

History file

Submit

file

Suspend

Life cycle of HTCondor Machine

5

schedd startd

collector

Config file

negotiator

shadow

Schedd may “split”

“Submit Side”

6

Idle Xfer In Running Complete

Held

Suspend

Xfer out

SuspendSuspend
History file

Submit

file

“Execute Side”

7

Idle Xfer In Running Complete

Held

Suspend

Xfer out

SuspendSuspend
History file

Submit

file

The submit side

8

• Submit side managed by 1

condor_schedd process

• And one shadow per running job

• condor_shadow process

• The Schedd is a database

• Submit points can be

performance bottleneck

• Usually a handful per pool

universe = vanilla

executable = compute

request_memory = 70M

arguments = $(ProcID)

should_transfer_input = yes

output = out.$(ProcID)

error = error.$(ProcId)

+IsVerySpecialJob = true

Queue

In the Beginning…

9

HTCondor Submit file

10

condor_submit submit_file

Submit file in, Job classad out

Sends to schedd

man condor_submit for full details

Other ways to talk to schedd

Python bindings, SOAP, wrappers (like DAGman)

JobUniverse = 5

Cmd = “compute”

Args = “0”

RequestMemory = 70000000

Requirements = Opsys == “Li..

DiskUsage = 0

Output = “out.0”

IsVerySpecialJob = true

From submit to schedd

One pool, Many schedds

condor_submit –name

chooses

Owner Attribute:

need authentication

Schedd also called “q”

not actually a queue

Condor_schedd holds all jobs

11

JobUniverse = 5

Owner = “gthain”

JobStatus = 1

NumJobStarts = 5

Cmd = “compute”

Args = “0”

RequestMemory = 70000000

Requirements = Opsys == “Li..

DiskUsage = 0

Output = “out.0”

IsVerySpecialJob = true

› In memory (big)

condor_q expensive

› And on disk

Fsync’s often

Monitor with linux

› Attributes in manual

› condor_q -l job.id

e.g. condor_q -l 5.0

Condor_schedd has all jobs

12

JobUniverse = 5

Owner = “gthain”

JobStatus = 1

NumJobStarts = 5

Cmd = “compute”

Args = “0”

RequestMemory = 70000000

Requirements = Opsys == “Li..

DiskUsage = 0

Output = “out.0”

IsVerySpecialJob = true

› Write a wrapper to condor_submit

› SUBMIT_ATTRS

› condor_qedit

› +Notation

› Schedd transforms

What if I don’t like those

Attributes?

13

On to configuration…

23

›(Almost)all configure is in files, “root”

CONDOR_CONFIG env var

/etc/condor/condor_config

› This file points to others

› All daemons share same configuration

› Might want to share between all machines

(NFS, automated copies, puppet, etc)

Configuration File

24

I’m a comment!

CREATE_CORE_FILES=TRUE

MAX_JOBS_RUNNING = 50

HTCondor ignores case:

log=/var/log/condor

Long entries:

collector_host=condor.cs.wisc.edu,\

secondary.cs.wisc.edu

Configuration File Syntax

25

› One metaknob controls other knobs

› use ROLE : Personal

Metaknobs

26

›LOCAL_CONFIG_FILE

Comma separated, processed in order

LOCAL_CONFIG_FILE = \

/var/condor/config.local,\

/shared/condor/config.$(OPSYS)

›LOCAL_CONFIG_DIR

Files processed IN LEXIGRAPHIC

ORDER

LOCAL_CONFIG_DIR = \

/etc/condor/config.d

Other Configuration Files

27

› You reference other macros (settings) with:

A = $(B)

SCHEDD = $(SBIN)/condor_schedd

› Can create additional macros for

organizational purposes

Configuration File Macros

28

› Can append to macros:

A=abc

A=$(A),def

› Don’t let macros recursively define each

other!

A=$(B)

B=$(A)

Configuration File Macros

29

› Later macros in a file overwrite earlier ones

B will evaluate to 2:

A=1

B=$(A)

A=2

Configuration File Macros

30

› CONDOR_CONFIG “root” config file:

/etc/condor/condor_config

› Local config file:

/etc/condor/condor_config.local

› Config directory

/etc/condor/config.d

Config file defaults

31

› For “system” condor, use default

Global config file read-only

• /etc/condor/condor_config

All changes in config.d small snippets

• /etc/condor/config.d/05some_example

All files begin with 2 digit numbers

› Personal condors elsewhere

Config file recommendations

32

› condor_config_val [-v] <KNOB_NAME>

Queries config files

› condor_config_val -dump

condor_config_val

33

› export _condor_KNOB_NAME=value

Over rules all others (so be careful)

Environment overrides

34

› Daemons long-lived

Only re-read config files on condor_reconfig

command

Some knobs don’t obey re-config, require restart

• DAEMON_LIST, NETWORK_INTERFACE

› condor_restart

condor_reconfig

35

Got all that?

36

› Not much policy to be configured in schedd

› Mainly scalability and security

› MAX_JOBS_RUNNING

› JOB_START_DELAY

› MAX_CONCURRENT_DOWNLOADS

› MAX_JOBS_SUBMITTED

Configuration of Submit side

37

The Execute Side

38

Primarily managed by

condor_startd process

With one condor_starter

per running jobs

Sandboxes the jobs

Usually many per pool

(support 10s of thousands)

› Condor creates it

From interrogating the machine

And the config file

And sends it to the collector

› condor_status [-l]

Shows the ad

› condor_status –direct daemon

Goes to the startd

Startd also has a classad

39

Condor_status –l machine

40

OpSys = "LINUX“

CustomGregAttribute = “BLUE”

OpSysAndVer = "RedHat6"

TotalDisk = 12349004

Requirements = (START)

UidDomain = “cheesee.cs.wisc.edu"

Arch = "X86_64"

StartdIpAddr = "<128.105.14.141:36713>"

RecentDaemonCoreDutyCycle = 0.000021

Disk = 12349004

Name = "slot1@chevre.cs.wisc.edu"

State = "Unclaimed"

Start = true

Cpus = 32

Memory = 81920

› HTCondor treats multicore as independent

slots

› Slots: static vs. partitionable

› Startd can be configured to:

Only run jobs based on machine state

Only run jobs based on Resources (GPUs)

Preempt or Evict jobs based on policy

…

One Startd, Many slots

41

3 types of slots

› Static (e.g. the usual kind)

› Partitionable (e.g. leftovers)

› Dynamic (usableable ones)

Dynamically created

But once created, static

How to configure

NUM_SLOTS = 1

NUM_SLOTS_TYPE_1 = 1

SLOT_TYPE_1 = cpus=100%

SLOT_TYPE_1_PARTITIONABLE = true

› Mostly policy,

› Several directory parameters

› EXECUTE – where the sandbox is

› COLLECTOR_HOST – where the cm is

› CLAIM_WORKLIFE

How long to reuse a claim for different jobs

Configuration of startd

44

› There’s also a “Middle”, the Central

Manager:

A condor_negotiator

• Provisions machines to schedds

A condor_collector

• Central nameservice: like LDAP

• condor_status queries this

› Please don’t call this “Master node” or head

› Not the bottleneck you may think: stateless

The “Middle” side

45

› Pool-wide scheduling policy resides here

› Scheduling of one user vs another

› Definition of groups of users

› Definition of preemption

› Whole talk on this – this pm.

Responsibilities of CM

46

Defrag daemon

› Optional, but usually on the central manager

One daemon defragments whole pool

› Scan pool, try to fully defrag some startds

› Only looks at partitionable machines

› Admin picks some % of pool that can be

“whole”

› Every condor machine needs a master

› Like “systemd”, or “init”

› Starts daemons, restarts crashed daemons

› Tunes machine for condor

The condor_master

48

condor_master: runs on all machine, always

condor_schedd: runs on submit machine

condor_shadow: one per job

condor_startd: runs on execute machine

condor_starter: one per job

condor_negotiator/condor_collector

one per pool

Quick Review of Daemons

49

Process View

50

condor_master

(pid: 1740)

condor_schedd

condor_shadow condor_shadow condor_shadow

“Condor Kernel”

“Condor Userspace”

fork/exec

fork/exec

condor_procd

condor_q condor_submit “Tools”

shared_port

Process View: Execute

51

condor_master

(pid: 1740)

condor_startd

condor_starter condor_starter condor_starter

“Condor Kernel”

“Condor Userspace”

fork/execcondor_procd

condor_status -direct “Tools”

Job Job Job

Process View: Central Manager

52

condor_master

(pid: 1740)

condor_collector

“Condor Kernel”

fork/exec

condor_procd

condor_userprio

“Tools”

condor_negotiator

Condor Installation Basics

53

› Either with tarball

tar xvf htcondor-8.6.11-redhat6

› Or native packages
wget

http://research.cs.wisc.edu/htcondor/yum/repo.d/h

tcondor-stable-rhel6.repo

get http://research.cs.wisc.edu/htcondor/yum/RPM-

GPG-KEY-HTCondor

rpm –import RPM_GPG-KEY-HTCondor

Yum install htcondor

Let’s Install HTCondor

54

http://research.cs.wisc.edu/htcondor/yum/repo.d/htcondor-stable-rhel6.repo
http://research.cs.wisc.edu/htcondor/yum/RPM-GPG-KEY-HTCondor

http://htcondorproject.org

55

› Major.minor.release
 If minor is even (a.b.c): Stable series

• Very stable, mostly bug fixes

• Current: 8.6

• Examples: 8.2.5, 8.0.3

– 8.6.0 coming soon to a repo near you

 If minor is odd (a.b.c): Developer series

• New features, may have some bugs

• Current: 8.7

• Examples: 8.3.2,

– 8.5.5 almost released

Version Number Scheme

56

› All minor releases in a stable series

interoperate

E.g. can have pool with 8.6.0, 8.6.5, etc.

But not WITHIN A MACHINE:

• Only across machines

› The Reality

We work really hard to do better

• 8.4 with 8.2 with 8.5, etc.

• Part of HTC ideal: can never upgrade in lock-step

The Guarantee

57

› First need to configure HTCondor

› 1100+ knobs and parameters!

› Don’t need to set all of them…

Let’s Make a Pool

58

BIN = /usr/bin

SBIN = /usr/sbin

LOG = /var/condor/log

SPOOL = /var/lib/condor/spool

EXECUTE = /var/lib/condor/execute

CONDOR_CONFIG =

/etc/condor/condor_config

Default file locations

59

› “Personal Condor”

All on one machine:

• submit side IS execute side

Jobs always run

› Use defaults where ever possible

› Very handy for debugging and learning

Let’s make a pool!

60

Role

What daemons run on this machine

CONDOR_HOST

Where the central manager is

Security settings

Who can do what to whom?

Minimum knob settings

61

LOG = /var/log/condor

Where daemons write debugging info

SPOOL = /var/spool/condor

Where the schedd stores jobs and data

EXECUTE = /var/condor/execute

Where the startd runs jobs

Other interesting knobs

62

› In /etc/condor/config.d/50PC.config

All daemons local

Use ROLE : Personal

CONDOR_HOST = localhost

ALLOW_WRITE = localhost

Minimum knobs for personal

Condor

63

Does it Work?

64

$ condor_status

Error: communication error

CEDAR:6001:Failed to connect to <128.105.14.141:4210>

$ condor_submit

ERROR: Can't find address of local schedd

$ condor_q

Error:

Extra Info: You probably saw this error because the

condor_schedd is not running on the machine you are

trying to query…

Checking…

65

$ ps auxww | grep [Cc]ondor

$

› condor_master –f

› service start condor

Starting Condor

66

67

$ ps auxww | grep [Cc]ondor

$

condor 19534 50380 Ss 11:19 0:00 condor_master

root 19535 21692 S 11:19 0:00 condor_procd -A …

condor 19557 69656 Ss 11:19 0:00 condor_collector -f

condor 19559 51272 Ss 11:19 0:00 condor_startd -f

condor 19560 71012 Ss 11:19 0:00 condor_schedd -f

condor 19561 50888 Ss 11:19 0:00 condor_negotiator -f

Notice the UID of the daemons

Quick test to see it works

68

$ condor_status

Wait a few minutes…

$ condor_status

Name OpSys Arch State Activity LoadAv Mem

slot1@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.190 20480

slot2@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.000 20480

slot3@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.000 20480

slot4@chevre.cs.wi LINUX X86_64 Unclaimed Idle 0.000 20480

-bash-4.1$ condor_q

-- Submitter: gthain@chevre.cs.wisc.edu : <128.105.14.141:35019> :

chevre.cs.wisc.edu

ID OWNER SUBMITTED RUN_TIME ST PRI SIZE CMD

0 jobs; 0 completed, 0 removed, 0 idle, 0 running, 0 held, 0 suspended

$ condor_restart # just to be sure…

›NUM_CPUS = X

How many cores condor thinks there are

›MEMORY = M

How much memory (in Mb) there is

›STARTD_CRON_...

Set of knobs to run scripts and insert attributes

into startd ad (See Manual for full details).

Some Useful Startd Knobs

69

› Each daemon logs mysterious info to file

› $(LOG)/DaemonNameLog

› Default:

/var/log/condor/SchedLog

/var/log/condor/MatchLog

/var/log/condor/StarterLog.slotX

› Experts-only view of condor

Brief Diversion into daemon logs

70

› Distributed machines makes it hard

Different policies on each machines

Different owners

Scale

Let’s make a “real” pool

71

› Requirements:

No firewall

Full DNS everywhere (forward and backward)

We’ve got root on all machines

› HTCondor doesn’t require any of these

(but easier with them)

Most Simple Distributed Pool

72

› Three Options (all require root):

Nobody UID

• Safest from the machine’s perspective

The submitting User

• Most useful from the user’s perspective

• May be required if shared filesystem exists

A “Slot User”

• Bespoke UID per slot

• Good combination of isolation and utility

What UID should jobs run as?

73

UID_DOMAIN = \

same_string_on_submit

TRUST_UID_DOMAIN = true

SOFT_UID_DOMAIN = true

If UID_DOMAINs match, jobs run as user,

otherwise “nobody”

UID_DOMAIN SETTINGS

74

SLOT1_USER = slot1

SLOT2_USER = slot2

…

STARTER_ALOW_RUNAS_OWNER = false

EXECUTE_LOGIN_IS_DEDICATED=true

Job will run as slotX Unix user

Slot User

75

› HTCondor can work with NFS

But how does it know what nodes have it?

› WhenSubmitter & Execute nodes share

FILESYSTEM_DOMAIN values
– e.g FILESYSTEM_DOMAIN = domain.name

› Or, submit file can always transfer with

should_transfer_files = yes

› If jobs always idle, first thing to check

FILESYSTEM_DOMAIN

76

› Central Manager

› Execute Machine

› Submit Machine

3 Separate machines

77

Use ROLE : CentralManager

CONDOR_HOST = cm.cs.wisc.edu

ALLOW_WRITE = *.cs.wisc.edu

Central Manager

78

Use ROLE : submit

CONDOR_HOST = cm.cs.wisc.edu

ALLOW_WRITE = *.cs.wisc.edu

UID_DOMAIN = cs.wisc.edu

FILESYSTEM_DOMAIN = cs.wisc.edu

Submit Machine

79

Use ROLE : Execute

CONDOR_HOST = cm.cs.wisc.edu

ALLOW_WRITE = *.cs.wisc.edu

UID_DOMAIN = cs.wisc.edu

FILESYSTEM_DOMAIN = cs.wisc.edu

default is

#FILESYSTEM_DOMAIN=$(FULL_HOSTNAME)

Execute Machine

80

› Does order matter?

Somewhat: start CM first

› How to check:

› Every Daemon has classad in collector

condor_status -schedd

condor_status -negotiator

condor_status -any

Now Start them all up

81

condor_status -any

82

MyType TargetType Name

Collector None Test Pool@cm.cs.wisc.edu

Negotiator None cm.cs.wisc.edu

DaemonMaster None cm.cs.wisc.edu

Scheduler None submit.cs.wisc.edu

DaemonMaster None submit.cs.wisc.edu

DaemonMaster None wn.cs.wisc.edu

Machine Job slot1@wn.cs.wisc.edu

Machine Job slot2@wn.cs.wisc.edu

Machine Job slot3@wn.cs.wisc.edu

Machine Job slot4@wn.cs.wisc.edu

mailto:Pool@cm.cs.wisc.edu

› condor_q / condor_status

› condor_ping ALL –name machine

› Or

› condor_ping ALL –addr ‘<127.0.0.1:9618>’

Debugging the pool

83

› Check userlog – may be preempted often

› run condor_q -better-analyze job_id

What if a job is always idle?

84

Whew!

85

›condor_status –direct –schedd –

statistics 2

› (all kinds of output), mostly aggregated

› NumJobStarts, RecentJobStarts, etc.

› See manual for full details

Condor statistics

86

› Most important statistic

› Measures time not idle

› If over 95%, daemon is probably saturated

DaemonCoreDutyCycle

87

› HTCondor scales to 100,000s of machines

With a lot of work

Contact us, see wiki page

• …

Speeds, Feeds,

Rules of Thumb

90

› Your Mileage may vary:

Shared File System vs. File Transfer

WAN vs. LAN

Strong encryption vs none

Good autoclustering

› A single schedd can run at 50 Hz

› Schedd needs 500k RAM for running job

50k per idle jobs

› Collector can hold tens of thousands of ads

Without Heroics:

91

Tools for admins

92

› Three kinds for submit and execute

› -fast:

Kill all jobs immediate, and exit

› -gracefull

Give all jobs 10 minutes to leave, then kill

› -peaceful

Wait forever for all jobs to exit

condor_off

93

› Restarts all daemons on a given machine

› Can be run remotely – if admin priv allows

condor_restart

94

› -collector

› -submitter

› -negotiator

› -schedd

› -master

condor_status

95

› Condor_userprio –allusers

Whole talk on this,

condor_userprio

96

› Remotely pulls a log file from remote machine

› condor_fetchlog execute_machine STARTD

condor_fetchlog

97

› http://htcondorproject.org

› More detail in following talks…

› htcondor-users email list

› Talk to us!

Thank you -- For more info

98

http://htcondorproject.org/

