

Monitoring Primer European HTCondor Workshop 2018

Todd Tannenbaum
Center for High Throughput Computing
University of Wisconsin-Madison

Ad types in the condor_collector

- > startd ads
 - An ad for each slot on each machine
 - State = Unclaimed | Claimed | Drained ...
 - Activity = Busy | Idle | Retiring | Vacating ...
 - CPUs, Memory, Disk, GPUs, ...
- > submitter ads
 - An ad for each unique user
 - RunningJobs, IdleJobs, HeldJobs, ...
- accounting ads
 - Ad ad for each unique user and accounting group
 - Includes wall clock usage, priorities
- > schedd, master, negotiator, collector ads
 - One ad from each daemon instance

Q: How many slots are running a job?

A: Count slots where
State == Claimed
(and Activity != Idle)

How?

Obvious solutions aren't the best

- condor_status | grep Claimed | grep –v Idle | wc –l
 - Output subject to change, wrong answers, slow
- > condor_status -I | grep Claimed | wc -I
 - Wrong answers, really slow

Use constraints and projections

From

Where

- condor_status [-startd | -schedd | -master...]
 - -constraint <classad-expr>-
 - -autoformat <attr1, attr2, ...>


```
condor_status -startd \
  -cons 'State=="Claimed" && Activity!="Idle"' \
  -af name | wc -l
```


Q: Which slots are running on machines where NFS is broken?

Ask startd to run a script/program to test health of NFS

```
STARTD_CRON_JOB_LIST = tag
STARTD_CRON_tag_EXECUTABLE = detect.sh
```

- Script returns a ClassAd with attribute NFS_Broken = True | False
- condor_status -cons 'NFS_Broken==True'
- Could specify customized output (i.e. a report) for condor_status to display broken machines

https://htcondor-wiki.cs.wisc.edu/index.cgi/wiki?p=ExperimentalCustomPrintFormats

Q: How many CPU cores are being utilized?

Sum the Cpus attribute for each slot that is Claimed and Busy:

```
% condor status -startd
   -cons 'State=="Claimed" && Activity!="Idle"'
   -af Cpus | less
                        Simple Statistics from command line
                        https://github.com/nferraz/st
% condor status -startd
   -cons 'State=="Claimed" && Activity!="Idle"'
   -af Cpus | st
        min
                                          stddev
N
                max
                         SUM
                                 mean
9053
                         10410 1.1499
                                          1.39239
                40
```


Graph of CPU utilization over time

Could have a cron job run every minute...

```
#!/bin/sh
echo `date`, ; condor_status \
-cons 'State=="Claimed" && Activity!="Idle"' \
-af Cpus | st --sum
```

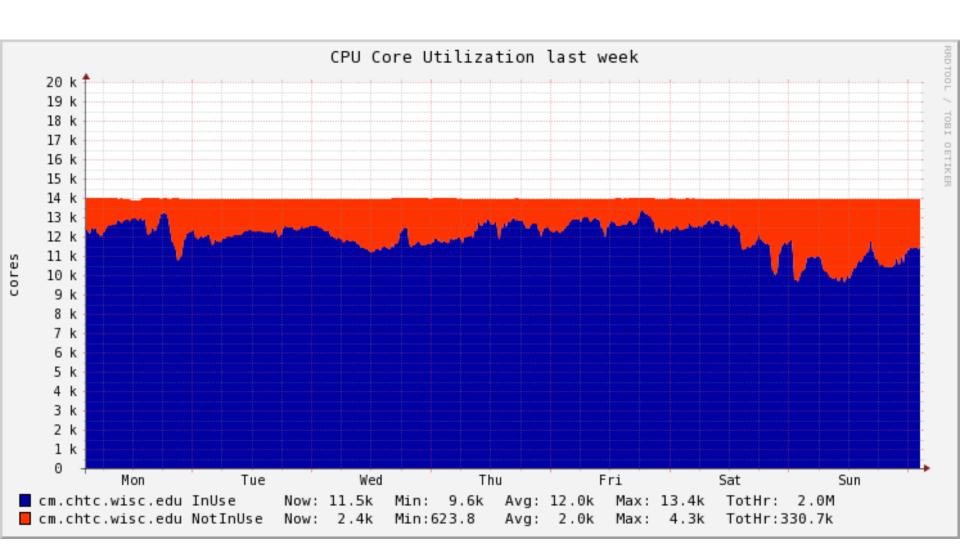
- What if you have hundreds or thousands of metrics?
- Detter idea: How about query the collector just once per minute for all attributes needed to compute all metrics?

Ganglia and condor_gangliad

- condor_gangliad queries the condor_collector once per minute
 - DAEMON_LIST = MASTER, GANGLIAD,...
- condor_gangliad has config file to filter and aggregate attributes from the ads in the condor collector in order to form metrics
- Forwards these metrics to Ganglia, which stores these values in a database and provides graphs over the web

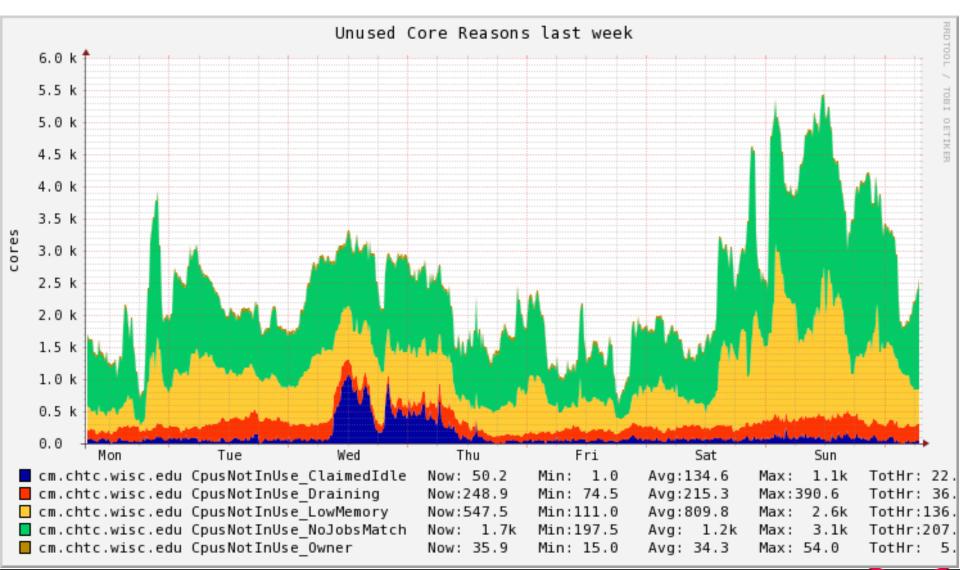
Example metric definitions in condor_gangliad

```
Name = "CpusInUse";
Aggregate = "SUM";
Value = Cpus;
Requirements = State=="Claimed" && Activity!="Idle";
TargetType = "Machine";
Name = "CpusNotInUse";
Aggregate = "SUM";
Value = Cpus;
Requirements = State!="Claimed" | Activity=="Idle";
TargetType = "Machine";
```

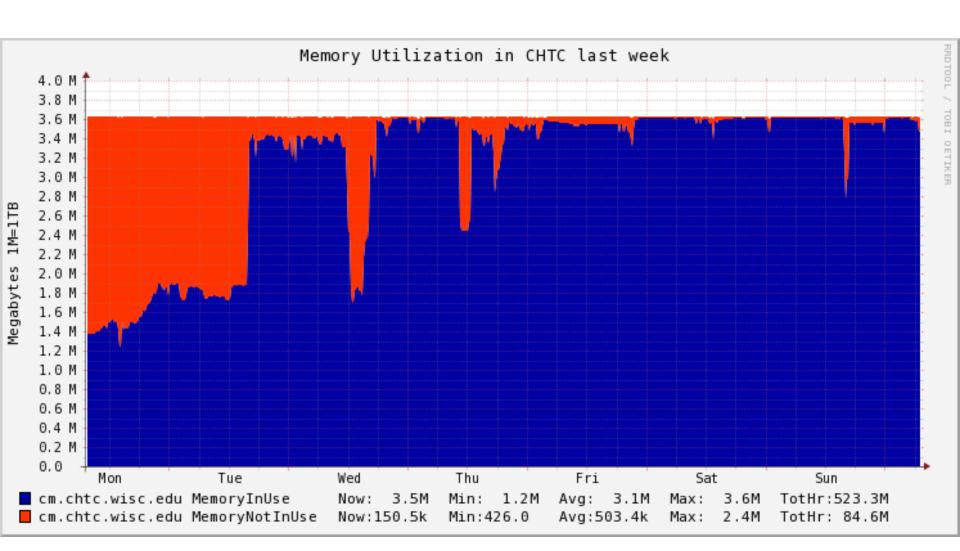


Add a graph to a view dashboard: /var/lib/ganglia/view_Miron.json

```
{ "aggregate_graph":"true",
 "host_regex":[
   {"regex":"cm.chtc.wisc.edu"}
 "metric_regex":[
   {"regex":"(Cpus(InUse|NotInUse)"}
 "graph_type":"stack",
 "vertical_label":"cores",
 "title": "CPU Core Utilization"
```


Voila!


Why are cores not in use?

```
Name = "CpusNotInUse_LowMemory";
Aggregate = "SUM";
Value = Cpus;
Requirements = State=="Unclaimed" && Memory < 1024;
TargetType = "Machine";
Name = "CpusNotInUse_Draining";
Aggregate = "SUM";
Value = Cpus;
Requirements = State=="Drained";
TargetType = "Machine";
```



Unused Core Reasons

Memory Provisioned

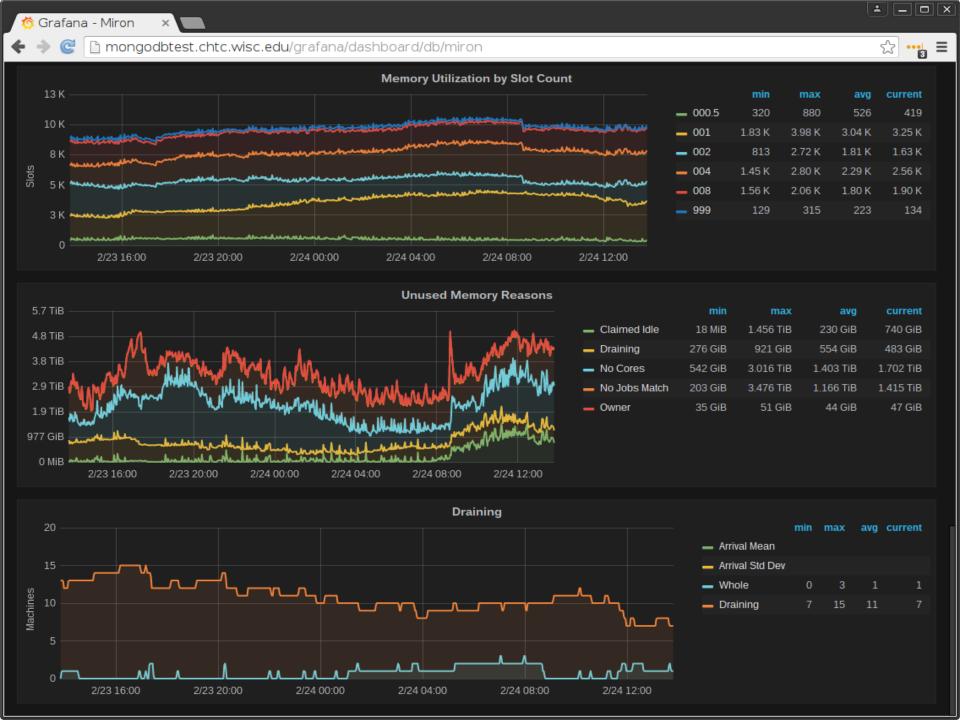
Memory Used vs Provisioned

```
In condor_config.local:
 STARTD JOB EXPRS =
        $(START_JOB_EXPRS) MemoryUsage
Then define MemoryEfficiency metric as:
 Name = "MemoryEfficiency";
Aggregate = "AVG";
 Value = real(MemoryUsage)/Memory*100;
 Requirements = MemoryUsage > 0.0;
 TargetType = "Machine";
```

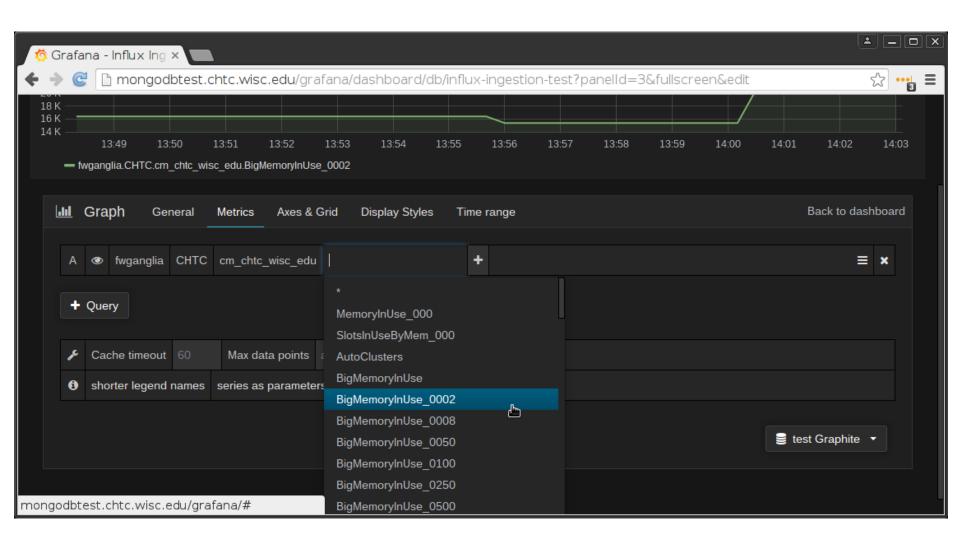

Example: Metrics Per User

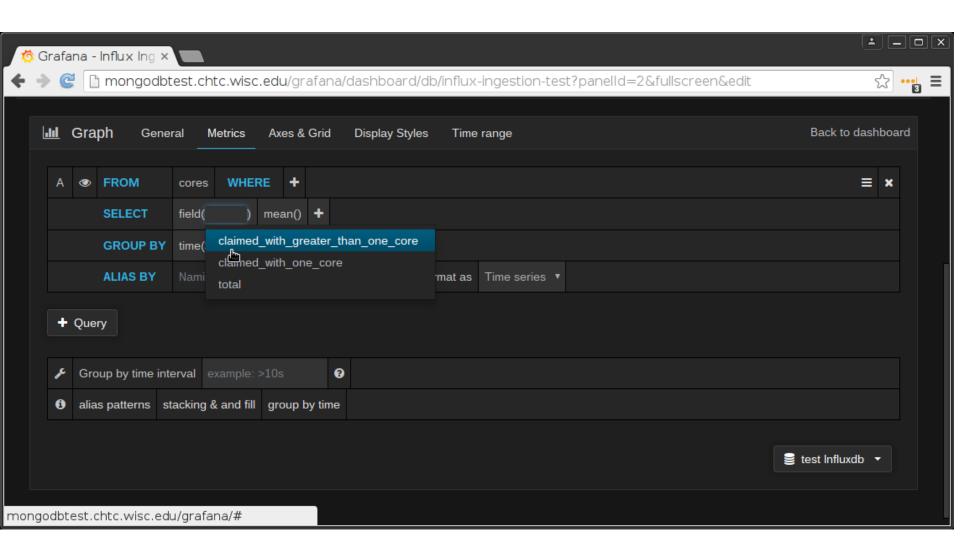
```
Name = strcat(RemoteUser,"-UserMemoryEfficiency");
Title = strcat(RemoteUser," Memory Efficiency");
Aggregate = "AVG";
Value = real(MemoryUsage)/Memory*100;
Requirements = MemoryUsage > 0.0;
TargetType = "Machine";
```


Dashboard(s) of useful charts


New Hotness: Grafana

- Grafana
 - Open Source
 - Makes pretty and interactive dashboards from popular backends including *Graphite's Carbon*, Influxdb, and very recently ElasticSearch
 - Easy for individual users to create their own custom persistent graphs and dashboards
- condor_gangliad -> ganglia -> graphite


```
# gmetad.conf - Forward metrics to Carbon via UDP carbon_server "mongodbtest.chtc.wisc.edu" carbon_port 2003 carbon_protocol udp graphite_prefix "ganglia"
```



Adding Grafana graph (Graphite)

Adding Grafana graph (Influxdb)

What sort of attributes are avail?

- Lots of good attributes in the collector by default; browse via
 - condor_status -schedd -l,
 - condor_status -submitter -l
 - condor_status -startd -l
 - condor_status -accounting -l
- Lots more available via HTCondor "Statistics"
 - Especially in the schedd, collector
 - condor_status -direct -schedd -statistics all:2 <name>
 - Send to the collector via knobs STATISTICS_TO_PUBLISH and STATISTICS_TO_PUBLISH_LIST
 - All kinds of output, mostly aggregated
 - See TJ or Manual for details

RecentDaemonCoreDutyCycle

Todd's favorite statistic for watching the health of submit points (schedds) and central manager (collector)

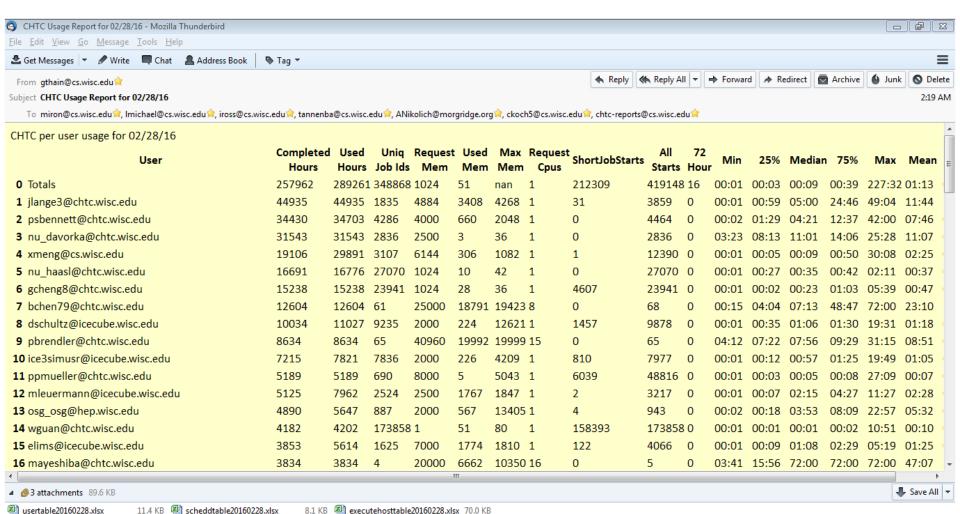
Measures time not idle

If goes 98%, your schedd or collector is saturated

Individual job monitoring

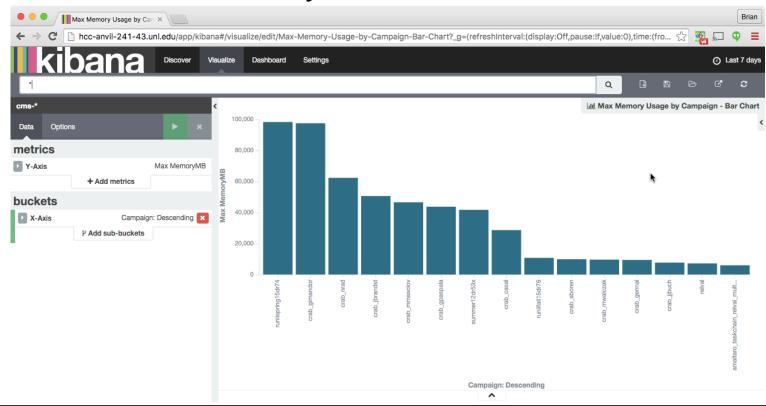
Job event log (log = foo.log in submit file)

```
001 (50288539.000.000) 07/30 16:39:50 Job executing on host:
<128.105.245.27:40435>
006 (50288539.000.000) 07/30 16:39:58 Image size of job updated: 1
       3 - MemoryUsage of job (MB)
       2248 - ResidentSetSize of job (KB)
004 (50288539.000.000) 07/30 16:40:02 Job was evicted.
        (0) Job was not checkpointed.
               Usr 0 00:00:00, Sys 0 00:00:00 - Run Remote Usage
               Usr 0 00:00:00, Sys 0 00:00:00 - Run Local Usage
       41344 - Run Bytes Sent By Job
       110 - Run Bytes Received By Job
       Partitionable Resources: Usage Request Allocated
          Cpus
          Disk (KB)
                                       53
                                                1 7845368
          Memory (MB)
                                       3
                                             1024
                                                       1024
```



Individual Job Monitoring

- Schedd Event Log (rotates)
 - Union of all job event logs for all jobs on a schedd
 - Config Knob: EVENT LOG = /some/file
- Audit Log (rotates)
 - Provenance of modifications to any job
 - Config Knob: SCHEDD AUDIT LOG = /file
- History File (rotates)
 - Schedd history: all job ads that left the queue
 - HISTORY = /file
 - Startd history: all job ads that used a slot
 - STARTD HISTORY = /file
 - View with condor_history (local or remote)

condor_pool_job_report



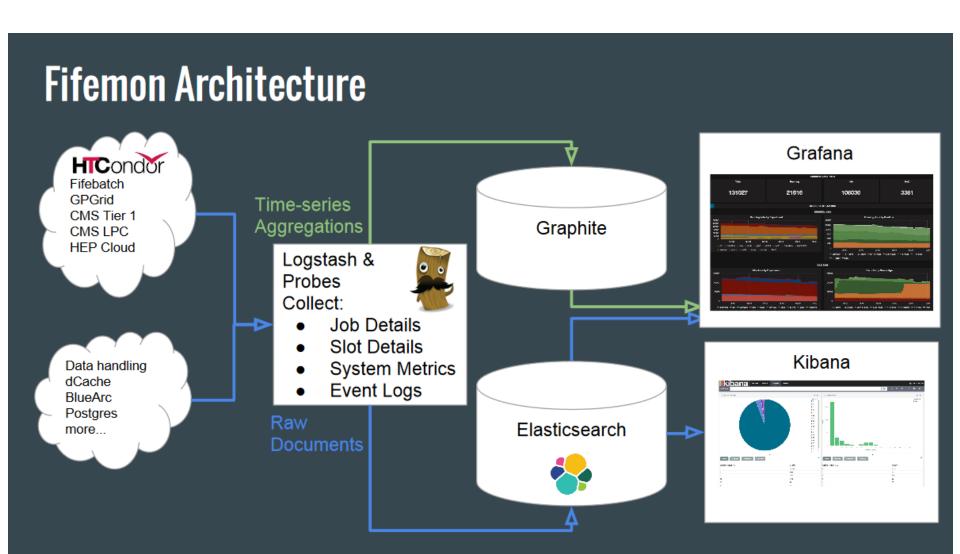
History Ads Pushed to ElasticSearch

- CMS pushes 1M history ads per day
 - 4GB disk/day, Server: 64GB Ram, 4 cores

Check out Fifemon!

"Comprehensive grid monitoring with Fifemon has improved resource utilization, job throughput, and computing visibility at Fermilab"

> Probes, dashboards, and docs at: <u>https://github.com/fifemon</u>


Fifemon Overview talk from HTCondor Week 2016:

https://research.cs.wisc.edu/htcondor/HTCondorWeek2016/presentations/ThuRetzke_Fifemon.pdf

Fifemon, cont.

Upcoming?

- condor_gangliad -> condor_metricd
 - Send aggregated metrics to Ganglia
 - Write out aggregated metrics to rotating JSON files
 - Send aggregated metrics to Graphite / Influx
- A new "HTCondor View" tool
 - Some basic utilization graphs out-of-the-box

Learn more! Share your setup! Decide what else is needed!

Join our working group!

Join HEPiX batch-monitoring working group!

The mailing list sign-up link is here:

https://listserv.in2p3.fr/cgi-bin/wa?A0=hepix-batchmonitoring-wg

Thank you!

