
Cgroups, containers and

HTCondor, oh my

Center for High Throughput

Computing

› Why put contain jobs?

› Ersatz HTCondor containment

› Docker containers

› Singularity containers

2

Outline

1) Protect the machine from the job.

2) Protect the job from the machine.

3) Protect one job from another.

3 Protections

3

› Allows nesting

› Need not require root

› Can’t be broken out of

› Portable to all OSes

› Allows full management:

Creation // Destruction

Monitoring

Limiting

The ideal container

4

CPU

Memory

Disk

Network

Signals

L1-2-3 cache

Resources a job can (ab)use

5

HTCondor’s containment

6

› You can’t kill what you can’t see

› Requirements:

RHEL 6 or later

USE_PID_NAMESPACES = true

• (off by default)

Must be root

PID namespaces

7

PID Namespaces

8

Init (1)
Master (pid 15)

Startd (pid 26)

Starter (pid 39)

Job B (pid 2)

Starter (pid 73)

Job A (pid 2)

Condor_init (pid 1) Condor_init (pid 1)

› Or, “Shared subtrees”

› Goal: protect /tmp from shared jobs

› Requires

Condor 8.0+

RHEL 5

HTCondor must be running as root

MOUNT_UNDER_SCRATCH = /tmp,/var/tmp

MOUNT_UNDER_SCRATCH

9

MOUNT_UNDER_SCRATCH=/tmp,/var/tmp

Each job sees private /tmp, /var/tmp

Downsides:

No sharing of files in /tmp

MOUNT_UNDER_SCRATCH

10

› Two basic kernel abstractions:

1) nested groups of processes

2) “controllers” which limit resources

Control Groups

aka “cgroups”

11

› Implemented as filesystem

Mounted on /sys/fs/cgroup,

Groups are per controller

• E.g. /sys/fs/cgroup/memory/my_group

• /sys/fs/cgroup/cpu/my_group

Interesting contents of virtual groups:

• /sys/fs/cgroup/memory/my_group/tasks

Condor default is

• /sys/fs/cgroup/<controller>/htcondor

Compare with systemd’s slices

Control Cgroup setup

12

› Cpu

Allows fractional cpu limits

› Memory

Need to limit swap also or else…

› Freezer

Suspend / Kill groups of processes

› … any many others

Cgroup controllers

13

This is the slide where

someone asks about the

blkio controller

14

› Requires:

RHEL6, RHEL7 even better

HTCondor 8.0+

Rootly condor

And… condor_master takes care of the rest

Enabling cgroups

15

› Starter puts each job into own cgroup

Named exec_dir + job id

› Procd monitors

Procd freezes and kills atomically

› CPUS attr * 100 > cpu.shares

› MEMORY attr into memory controller

› CGROUP_MEMORY_LIMIT_POLICY

Hard or soft

Job goes on hold with specific message

Cgroups with HTCondor

16

Cgroups seem fiddly, why not let

something else do it?

17

Enter Docker

Docker manages Linux containers via cgroups.

And gives Linux processes a private:

• Root file system

• Process space

• NATed network

• UID space

Examples

This is an “ubuntu” container

This is my host OS, running

Fedora

Processes in other

containers on this

machine can NOT see

what’s going on in this

“ubuntu” container

HTCondor docker universe

Need condor 8.4+

Need docker (maybe from EPEL)

$ yum install docker-io

Condor needs to be in the docker group!

$ useradd –G docker condor

Docker be running:

$ service docker start

What? No Knobs?

› condor_starter detects docker by default

$ condor_status –l | grep –i docker

HasDocker = true

DockerVersion = "Docker version 1.5.0, build a8a31ef/1.5.0"

› If docker is in a non-standard place

DOCKER = /usr/bin/docker

› DOCKER_DROP_ALL_CAPABILITIES

Evaluated with job and machine

Defaults to true

If false, removes –drop-all-cap from docker run

› DOCKER_VOLUMES = CVMFS, SCR

› DOCKER_VOLUME_DIR_CVMFS = /cvmfs

› DOCKER_MOUNT_VOLUMES = CVMFS

We had to have some knobs

22

“Docker” Universe jobs

universe = docker

docker_image = deb7_and_HEP_stack

executable = /bin/my_executable

arguments = arg1

transfer_input_files = some_input

output = out

error = err

log = log

queue

A docker Universe Job

Is a Vanilla job

› Docker containers have the job-nature
condor_submit

condor_rm

condor_hold

Write entries to the user log event log

condor_dagman works with them

Policy expressions work.

Matchmaking works

User prio / job prio / group quotas all work

Stdin, stdout, stderr work

Etc. etc. etc.*

Docker Universe

universe = docker

docker_image =deb7_and_HEP_stack

executable = /bin/my_executable

• Image is the name of the docker image on the

execute machine. Docker will pull it

• Executable is from submit machine or image

NEVER FROM execute machine!

• Executable is optional

(Images can name a default command)

Docker Universe and File

transfer

universe = docker

transfer_input_files = <files>

When_to_transfer_output = ON_EXIT

• HTCondor volume mounts the scratch dir

And sets the cwd of job to scratch dir

• RequestDisk applies to scratch dir, not container

• Changes to container are NOT transferred back

• Container destroyed after job exits

Docker Resource limiting

RequestCpus = 4

RequestMemory = 1024M

RequestDisk = Somewhat ignored…

RequestCpus translated into cgroup shares

RequestMemory enforced

If exceeded, job gets OOM killed

job goes on hold

RequestDisk applies to the scratch dir only

10 Gb limit rest of container

› Singularity like light Docker:

No daemon

Setuid wrapper binary

Can work without hub

Can work with setuid (soon)

Enter Singularity

28

› SINGULARITY = /usr/bin/singularity

› SINGULARITY_JOB = true

› SINGULARITY_IMAGE_EXPR =

“/full/path/to/image”

Enabling Singularity for all jobs

29

SINGULARITY_JOB = \

!isUndefined(TARGET.SingularityImage)

SINGULARITY_IMAGE_EXPR = \

TARGET.SingularityImage

…for some jobs

30

› Designed not as user focused, rather admin

› Jobs may not know when in singularity

› Startd focused

Singularity vs Docker

31

Thank you!

Questions?

32

