
HTCondor Configuration

(and Submit) Language

John (TJ) Knoeller

HTCondor Week UK 2018

› HTCondor uses a common "language" to

parse and query config files and submit

files.

› It is a complex and quirky language that

does a lot of different things

› Prepare to be amazed (and appalled...)

2

Overview

› Submit files and config files consist of

Key = Value

• Key is case-insensitive

• Value has no type (its all just text to config/submit)

• Values can refer to other values using $(key)

Statements (if, include, queue)

› Keys are loaded into a key:value store

› Statements are executed

Submit/Config “language”

3

› Submit files and config files are loaded into

a key:value store that can be queried.

Last definition of a key wins

All keys are stored but...

Only some keys have meaning to HTCondor

• Config and Submit have different schemas/defaults

› Statements are executed as the file is read

Python bindings see only the key:value store

Submit/Config key:value store

4

› Compiled into HTCondor is another

key:value store containing default values

For config, we call this the param table

config lookups use the param table when there

is no entry in the config key:value store

submit has a similar (but much smaller) table of

default values for Arch, Opsys, etc

Behind the key:value store

5

Keys (aka knobs, macros, params)

are case insensitive

log=/var/log/condor

LOG = /var/log/condor

use \ for line continuation

collector_host=condor.cs.wisc.edu,\

secondary.cs.wisc.edu \

tertiary.cs.wisc.edu

Config/Submit File Syntax

6

We want to frob the bobulator \

FROB_BOBULATOR = true

› In 8.2+ : \ at the end of a comment line is

ignored, so every comment line needs its

own #

› Before 8.2 : \ at the end of a comment line
‘eats’ the next line, so FROB_BOBULATOR is

not set

Line continuation after comment

7

ALLOW = A \

B \

C \

D

› In 8.2+ : The ALLOW list is A B D

› Before 8.2 : The ALLOW list is A B # C D

# is a member of the list!

Comment after line continuation

8

› Values can reference the value of other

Keys using $(key)

A = $(B)

SCHEDD = $(SBIN)/condor_schedd

› Reference is a text substitution of the last

value assigned to the key

› Whitespace around the = and at the end of

line are removed before key assignment

Macro substitution

9

› Last definition of a key wins, so if
A=1

B=$(A)

A=2

A and B will both evaluate to 2

› Substitutions happen at time of lookup/use.

Which is after all files have been read

Except self references and statements - they

substitute as the file is read

Substitution times

10

› Self references are substituted as the file is

read. For example:

A = $(B)

A = $(A) stuff

Is the same as configuring: A=$(B) stuff

› Circular references are not allowed

A = $(B)

B = $(A)

Daemon or tool will (eventually) abort

Self References

11

$(key:default)

› Substitutes as the value of key if it is

defined, otherwise it is default

example:

NUM_SLOTS = $(NUM_CPUS:2)/2

Number of slots will be either the final value of

NUM_CPUS divided by 2 or it will be 2/2

Substitution with a default

12

› Many values can be classad expressions

Depends on who does the lookup

• Values like Requirements must be expressions

Most numeric value lookups are evaluated

this works, evaluates to 4

NUM_SLOTS = size(split("a,b,c,d"))

Most string value lookups are not evaluated

this does NOT work as intended

Executable = strcat("sleep",".exe")

Expressions

13

key @=tag

value

...

@tag

› The value of key will be the lines between

@=tag and @tag. for example
CLASSAD_USER_MAPDATA_Groups @=end

* Bob Physics,Music

* Alice Physics,Math

@end

Only a few uses for this at present

Multiline values

14

› In addition to $() substitution, there are

substitution functions

$FUNCTION_NAME(key [,arg1,...])

Function names are all upper case

Some functions have arguments

Some arguments are optional

(see section 3.3.10 in the manual)

Substitution functions

15

$ENV(name[:default])

Substitute with the value of environment

variable name

If name does not exist, substitute with

UNDEFINED or default (if specified)

To substitute with nothing if name does not
exist use $ENV(name:)

Environment substitutions

16

$INT(key[,format])

$REAL(key[,format])

Evaluate value of key and printf

optional format is everything after the comma

$CHOICE(key,list)

$CHOICE(key,item,item,item)

Evaluate key as index into item list

$F[pdnxwuqa](key_or_value)

Extract filename parts and strip/add quotes

(Some) Substitution functions

17

A = 1

This will not work (parse error)

tot = $INT($(A) + 1)

But this will work

A_PLUS = $(A) + 1

tot = $INT(A_PLUS)

No $ inside a $FUNC()

18

› In statements $ substitutions happen as the

file is read - the current value is used

› Statements are

Include

Use (but not metaknob arguments)

Conditionals

Queue

Error/Warning

Statements

19

› Include : <file>

read <file>, abort if it cannot be read

› Include ifexist : <file>

read <file> if it exists

› Include command : <script> <args>

run <script> and include its stdout as part of

config/submit

(Remember: $() substitutions will use current value here)

Include statements

20

assume HOSTNAME is cheese

LOCAL_DIR = /home/bob

FILE = config.$(HOSTNAME)

Include : $(LOCAL_DIR)/$(FILE)

FILE = $(LOCAL_DIR)/script.cmd

Include command : $(FILE) $(HOSTNAME)

› HTCondor 8.2+ will do this

Include /home/bob/config.cheese

run /home/bob/script.cmd cheese

Example of Include

21

FILE = config.$(HOSTNAME)

Include : $(LOCAL_DIR)/$(FILE)

FILE = $(LOCAL_DIR)/script.cmd

Include command : $(FILE) $(HOSTNAME)

Foo = bar

› HTCondor 8.0 and earlier sees this as just

key = value statements, as if it were
FILE = config.$(HOSTNAME)

Include = $(LOCAL_DIR)/$(FILE)

FILE = $(LOCAL_DIR)/script.cmd

Include = $(FILE) $(HOSTNAME)

Foo = bar

Digression - Backward Include

22

› Every daemon and every tool will

Read every config file

Run every config script (if any)

› Sometimes several tools at the same time!

Scripts should have NO side effects

› Config is read as root on startup but as

condor on reconfig

All config files should be owned by root

World readable, root (only) writable

Use Include Carefully!

23

Include command into <file> : <script> <args>

read <file> if it exists

otherwise

run <script> and write output into <file>

› For config <file> should be absolute path

› <file> must be deleted by hand

Useful mostly for submit and configurations that

get thrown away after one use (glide-in, annex)

Include with cache (8.6+)

24

›If, Elif support only basic conditionals

[!] <boolean-or-number>

[!] defined <key>

[!] version [><=]= x.y[.z]

› No comparison or complex conditionals

If version is a special case

$INT() is a workaround

› Empty conditional is false, not an error

conditionals

25

› For config files only, these “knobs” are set based on who

is reading config
$(IsMaster)

$(IsNegotiator)

$(IsSchedd)

$(IsShadow)

$(IsStartd)

$(IsStarter)

$(IsTool)

$(IsWindows)

Special macros for If

26

useful in temporary HTCondor config

If $(IsMaster)

include command into $(cache) : $(script)

else

include ifexist $(cache)

endif

useful in submit

if version >= 8.7.10

materialize_max_idle = 100

endif

Examples of If / Else

27

HAVE_SCHEDD_DAEMON = \

stringListMember("SCHEDD","$(DAEMON_LIST)")

If $INT(HAVE_SCHEDD_DAEMON)

MASTER_NEW_BINARY_RESTART = FAST

else

MASTER_NEW_BINARY_RESTART = GRACEFUL

endif

If tricks (8.4 or later)

28

If and include will use the current value

for $() expansion.

So the previous example only works if it is

after the last DAEMON_LIST assignment in

your config

Gotcha

29

› Config/submit key can have prefixes
SCHEDD.COLLECTOR_HOST = 192.168.100.2

FRED.COLLECTOR_HOST = 192.168.100.3

MY.CUSTOM_ATTRIBUTE = "custom value"

› Prefixed knobs are stored but ignored except

Daemons will use prefixed knobs if the prefix is

their localname or their subsystem name

Submit will treat the MY. prefix as a direct

assignment into the job classad

Prefixes (a.k.a. daemon overrides)

30

this is how HTCondor implements the IsMaster macro

#

IsMaster = false

MASTER.IsMaster = true

if $(IsMaster)

config statements only the condor_master

will parse

endif

Prefix example for config

31

› condor_config_val output can differ from

what the daemon sees if you use the

$(IsXXX) macros. You would need to use

condor_config_val -daemon

or

condor_config_val –subsys daemon

To see the effective config for a daemon

Gotcha

32

submit file

Executable = process_data

transfer_input_files = $(DATA)

arguments = $Fqanx(DATA)

store the input filename into the job classad

MY.DataFile = $Fqnx(DATA)

Queue DATA matching *.dat

› To see which job is processing which datafile use:
condor_q -af:jh DataFile

Prefix example for submit

33

› Use category : Name [Name2]

Like a pre-defined include

use ROLE : Personal

› Use [POLICY | FEATURE] : Name(args)

Some POLICY and FEATURE meta-knobs

accept arguments

use FEATURE : PartitionableSlot(1,80%)

Currently no use in submit files

Use statements (aka meta-knobs)

34

› Categories are currently

ROLE, FEATURE, POLICY, SECURITY

› Find out what meta-knobs exist with

condor_config_val use category

› Examine contents of a meta-knob with

condor_config_val use category:name

Explore the config meta-knobs

35

condor_config_val –schedd –verbose

Ask the Schedd about it’s config

condor_config_val –subsys schedd –verbose

Parse the config as the schedd would

condor_config_val –writeconfig:upgrade -

Write an ‘upgrade’ file containing only the

knobs that you’ve changed

condor_config_val tricks

45

Any Questions?

46

