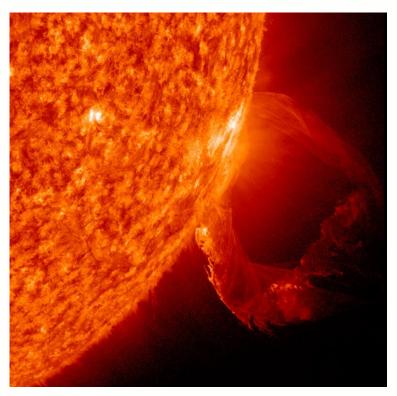
Cloud scavenging with HTCondor in the EOSCpilot Fusion Science Demonstrator

Andrew Lahiff Culham Centre for Fusion Energy, UK Atomic Energy Authority

> **EOSC**pilot The European Open Science Cloud for Research Pilot Project www.eoscpilot.eu

European HTCondor Workshop 2018, Rutherford Appleton Laboratory

- Introduction
 - What is EOSC & EOSCpilot?
 - Computing in Fusion
- EOSCpilot Fusion Science Demonstrator
- Conclusions & future work


What is EOSCpilot?

- European Open Science Cloud (EOSC)
 - EOSCpilot
 - First phase in the development of the EOSC
 - EOSC-Hub
 - Providing a way for researchers to discover, access & use and re-use a broad spectrum of resources for data-driven research
- Science Demonstrators in EOSCpilot
 - Aim to show the relevance & usefulness of EOSCpilot services
 - 15 demonstrators from difference disciplines
 - Environment, earth sciences, high energy physics, life sciences, social sciences, astronomy, ...
 - (Very) small-scale proof-of-concepts

PROMINENCE

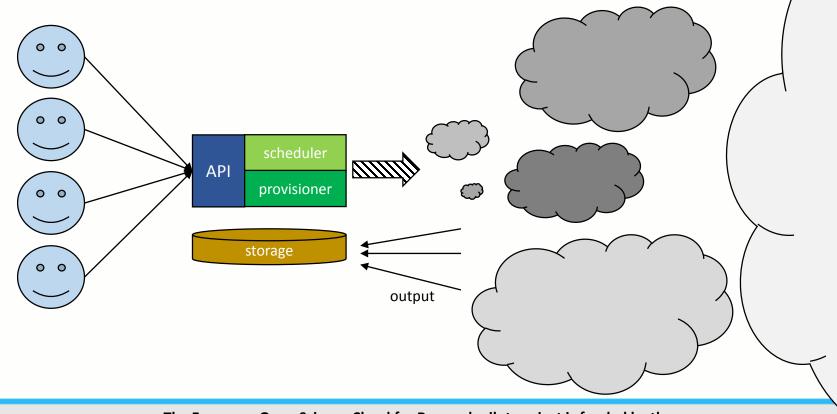
• PROMINENCE is the Fusion Science Demonstrator

NASA Goddard Space Flight Centre https://creativecommons.org/licenses/by/2.0/legalcode

www.eoscpilot.eu

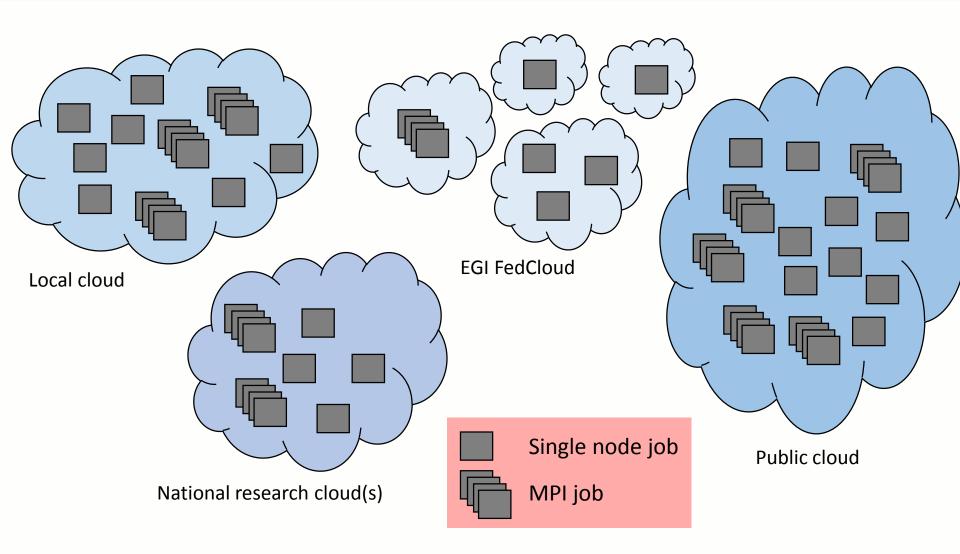
Computing in fusion

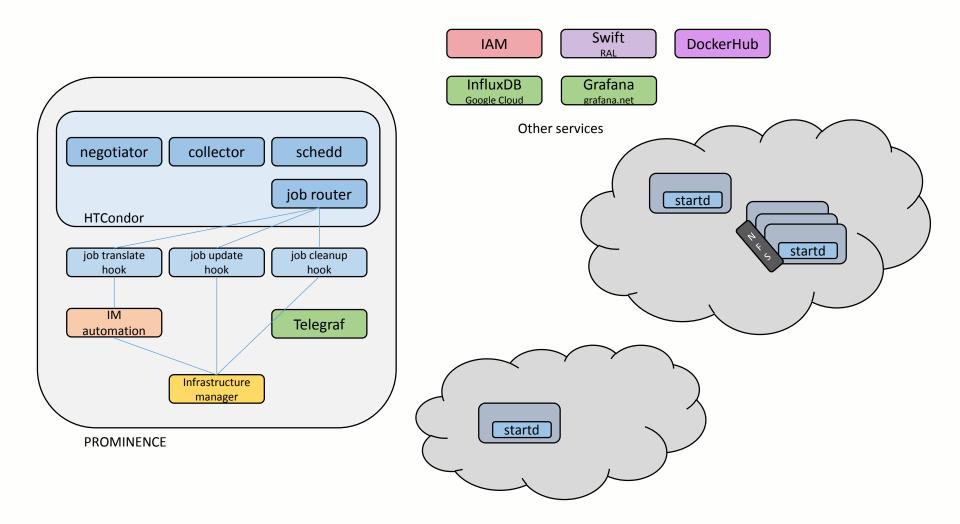
- Fusion
 - Recreating the power of the sun in a small volume
 - Eventual aim to create electricity
- EUROfusion research community today
 - Isolated "islands" of data & computing resources
 - Difficult to access data & resources at other sites
- Challenges of ITER
 - Largest fusion experiment ever built
 - 2 PB of raw data will be generated per day
 - Data will need to be distributed globally
 - Need for access to more computing resources


© ITER Organization, http://www.iter.org/

- Aims to address part of the fusion computing problem
 - How to make use of academic and public clouds for Fusion HPC applications
 - How to extend small scale on-premises facilities to cope with bursty workloads
 - How to get the same result wherever you run
- Data management is not being considered yet

- Allow users to run containerized HTC & HPC jobs on clouds
 - Bursting from local cloud resources onto external clouds
 - Easy access to output files for further analysis


www.eoscpilot.eu


- Why develop yet another way to run batch jobs on clouds?
 - Most people assume you have a *Single Great Big Reliable Cloud*[™]
- What if you only have access to lots of little clouds?
 - In particular only or mostly opportunistic access?
- Cloud bursting
 - You have a small local cloud, but want to burst out to external clouds automatically
 - Not just bursting to AWS (or Azure, or Google)
 - Burst first to national research cloud(s), then to public clouds
 - We need "hierarchical cloud bursting"

Hierarchical cloud bursting

www.eoscpilot.eu

HTCondor functionality used

- Job router + plugins
 - Provisions & destroys infrastructure for each job
- File transfer plugin
 - Downloads any artifacts & extracts archives if necessary
- Job prepare hook
 - Modifies job ClassAds to use Singularity
 - We're not using HTCondor's built-in support for Singularity
 - HTCondor doesn't appear to support jobs with no executable
- Job exit hook
 - Uploads output files (if necessary) to Swift
- Many custom ClassAd attributes
 - Using HTCondor as a database

Cloud deployment

- Deploy one VM (or group of VMs) per job
 - Expecting all jobs to be at least multi-core if not multi-node
 - Expecting medium job run-times (hours-days)
 - Expecting a wide variety of cores & memory requirements per job
- Infrastructure Manager used to deploy infrastructure on clouds
 - One of the few tools which supports OCCI, needed for EGI FedCloud
 - Can use either Ansible or cloud-init for contextualization
 - Successfully used EGI FedCloud, OpenStack, Google, Azure

- Automation layer around Infrastructure Manager
 - Finds the best cloud to provision infrastructure, given requirements & preferences
 - Requirements
 - Number of cores, memory, image (name or distribution/version/...)
 - Site or region
 - Preferences
 - List of regions in order of preferences
 - Prefer to run an MPI job on a cloud with low-latency interconnects
 - Handling failures
 - If multiple clouds meet requirements, if deployment fails on one clouds, will automatically try another
 - Avoid clouds temporarily which have failed recently

- Submitting jobs to HTCondor
 - ssh access to a submit node running schedd
 - Remote submission
- This is quite limiting
 - Giving users ssh access to a machine is never easy
 - Especially external users
- What about a RESTful API + JSON?
 - Submit easily from anywhere
 - Mac laptop, Windows desktop, Go app, ...
 - Provide a simple CLI which uses the RESTful API

Submit locally, run globally

Submit globally, run globally

- Almost like a Grid CE, but provides a "normal" API & doesn't use X.509
- Python Flask + gunicorn + nginx
 - Uses HTCondor Python API
 - nginx provides SSL termination (Let's Encrypt)
- Sandbox directory created per job
 - Input files, stdout/err
- Authentication
 - For proof-of-concept using hardwired list of usernames & passwords
 - Have successfully tested integration with the INDIGO-DataCloud IAM service
 - OpenID Connect tokens for authentication

• Submitting the simplest possible job:

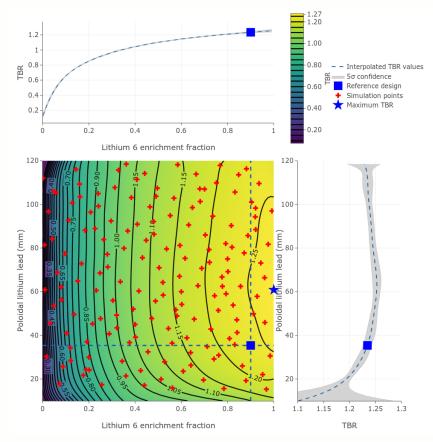
```
[[cloudadm@vnode-0 ~]$ prominence create alahiff/testpi:latest
{
    "id": 117
}
```

• Listing jobs:

Command line interface examples

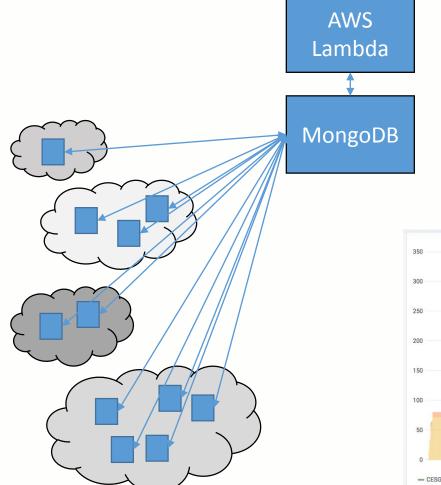
• Details about a job

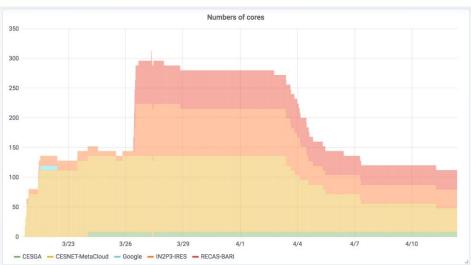
```
[cloudadm@vnode-0 ~]$ prominence get 127
Ε
 {
    "id": 127,
    "status": "running",
    "image": "alahiff/raysect-demo-bunny:latest",
    "cpus": 1,
    "memory": 1,
   "nodes": 1,
   "disk": 10.
    "runtime": 720,
    "outputFiles":
      {
        "url": "https://s3.echo.stfc.ac.uk/swift/v1/prominence-jobs/317c4f75-e109-459d-bded-e
        "name": "stanford_bunny.png"
      }
   ],
    "events": {
      "creation": "2018-08-29T15:01:53Z",
      "containerCreationStart": "2018-08-29T15:12:42Z"
   }
 }
]
```



- Have successfully run a variety of applications, including
 - Geant4 (MPI)
 - simulation of the passage of particles through matter
 - SERPENT2
 - continuous-energy Monte Carlo particle transport code
 - ASCOT (MPI)
 - Accelerated Simulation of Charged Particle Orbits in a Tokamak
 - Raysect
 - Scientific ray-tracing

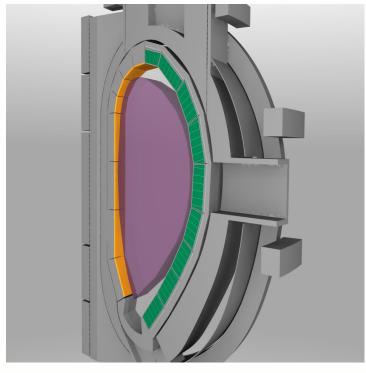
Example: Breeder blanket design

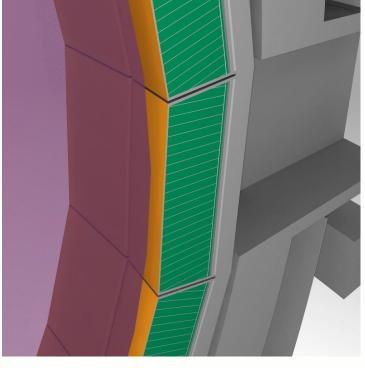

- Breeder blankets are designed to ensure tritium self-sufficiency in fusion power plants
- A blanket design tool was created which automates and parameterizes the production of 3D CAD based neutronics models
- Machine learning was used to drive the parametric model creation & optimize the breeder blanket performance in terms of tritium production


Image courtesy of Jonathan Shimwell

Example: Breeder blanket design

- Lots of identical jobs
- Each job obtains input parameters from MongoDB
- Output written to MongoDB
- An AWS Lambda function visualizes the progress of the parameter sweep




Cloud resources used

www.eoscpilot.eu

Example: Breeder blanket design

The different blanket designs simulated

Full reactor design

Images courtesy of Jonathan Shimwell

www.eoscpilot.eu

- EOSCpilot has allowed us to successfully demonstrate the usage of cloud computing for fusion
 - Including MPI jobs
 - Makes extensive use of HTCondor
- Future work
 - EOSC-Hub Fusion Competence Centre
 - Workflows
 - Data management
 - Integration with a private Docker registry
 - Restrict access to container images to specific people/groups
 - Improvements & scalability
 - Moving towards making PROMINENCE a production service

Questions?

© 2015 Kisha Gianni and Lyn Gianni