Building a LIGO HTCondor site on top of a shared HPC cluster

Paul Hopkins
Cardiff University and LIGO Scientific Collaboration

LIGO Accounting

49 OSG-LIGO-CIT-->OSG.RAL

	Cluster	SU HOURS (7 days)	SU HOURS (52 weeks)	SU HOURS (total)	SU HOURS (since O2) ▼ 📤
0	Total	4,090,733	263,041,029	570,800,210	395,855,806
-1	ATLAS-AEI	17,057	127,801,704	278,258,904	179,066,042
2	LIGO-CIT	2,464,169	87,174,828	149,071,732	135,476,858
3	LIGO-LHO	659,423	14,995,694	20,067,524	18,932,514
4	NEMO-UWM	196,382	8,414,530	38,849,419	16,235,290
5	LIGO-LLO	183,902	9,291,258	13,717,300	12,008,455
6	ARCCA-CDF	94,178	8,197,247	20,603,810	11,238,248
7	IUCAA	17,849	4,354,131	7,014,275	6,390,264
8	VIRGO.CNAF	0	256,317	10,960,224	4,166,846
9	SUGAR-SU	0	264,573	10,265,547	2,817,724
10	OSG-LIGO-CIT>OSG.Unknown	0	266,049	1,771,775	1,771,775
11	OSG-SUGAR-SU>OSG.SU-OG	0	17,939	1,276,126	1,276,126
12	OSG-SUGAR-SU>OSG.NIKHEF	0	17,224	866,375	866,375
35	OSG-SUGAR-SU>OSG.RAL	0	10,245	67,842	67,842

0

12,095

12,095

9,568

What does a LIGO Data Grid site need?

- Access cluster using LIGO credentials
- ★ Software
- Data
- ★ HTCondor Scheduler
- Web Server to view results with LIGO Shibboleth authentication
- JupyterLab Service with "LIGO" kernels
- Shared File System!

Running HTCondor at Cardiff

- Standard RHEL 6.4 head node and compute nodes
- PBSPro scheduler
- Filesystems: /home, /software (NFS); /scratch (Lustre) and /tmp (local)

- Virtual and Physical head nodes under my control
- HTCondor Central Manager and Submit run on dedicated head nodes
- Only minor modifications allowed on the compute nodes
 - O How do deliver them to HTCondor?

HTCondor "Glideins"

HTCondor borrows whole nodes from PBSPro using custom glidein script:

• PBSPro then runs jobs on a dedicated queue using an operational user:

```
#!/bin/bash
#PBS -q ligo-condor
source /software/tools/condor/8.6.11/condor.sh
sudo -E $(which condor_master) -d -f
```

- sudo necessary to switch user to allow access to shared file system
- HTCondor is given whole node, 12 or 24 cores, depending on hardware.
- PBS maximum wall time is 5 or 10 days.

Glidein Config

```
DAEMON LIST = MASTER STARTD
LOCAL DIR = /tmp
LOG = $(LOCAL DIR)/Condor-log
SPOOL = $(LOCAL DIR)/Condor-spool
EXECUTE = $(LOCAL DIR)/Condor-execute
UID DOMAIN = arcca.cf.ac.uk
FILESYSTEM DOMAIN = arcca.cf.ac.uk
TRUST UID DOMAIN = True
STARTD NOCLAIM SHUTDOWN = 300
slot type 1 partitionable = true
slot type 1 = cpus=$(DETECTED CORES), mem=$(DETECTED MEMORY)
num slots type 1 = 1
```

Pros / Cons of whole node glidein

- PROS:
- Can use HTCondor to manage whole node:
 - condor_drain, reservation for development and testing
- Due to PBS walltime has a natural de-fragmentation and reassignment to faster nodes.

- CONS:
- Harder for HPC admins to monitor usage and job efficiency

Glidein Alternatives?

- Pyglidein
- Job Transforms to grid universe
- Condor Annex

LSC Software on Dedicated Sites

- All other LSC sites are dedicated to LIGO so software is installed as system packages, e.g. /usr/bin/python
- Two reference OSes; Scientific Linux 7 and Debian 8/9
- Sites carefully updated to ensure library versions are similar.
- Software can be easily installed at another dedicated site:
 - yum install lscsoft-all
- Some disadvantages:
 - Only one version of package can exist
 - Users are forced to upgrade
 - 3rd party packages within repository often quite old

LSC Software on ARCCA

- Software must be installed from source packages:
 - ./configure makemake install
 - Software then loaded via environment modules
- From 2012-2016 software was managed by hand
- From 2016-2018 I used <u>Spack</u> (https://spack.io/)
 - Many libraries already packaged (2771), adding packages very easy
 - Allows users to install different versions and "variants" simultaneously
 - Creates modules to load environment
 - spack install lscsoft-all

Spack - Disadvantages

- By default installs ALL dependencies
- For a large number of packages this can be too cumbersome
- Extra work needed to combine into a single installation directory
- Ultimately could not recommend to users
- If I restarted today then I would begin with Anaconda....

Singularity + CVMFS

- As well as containing processes, Singularity presents a complete software environment
- Can be efficiently distributed using CVMFS
- How should I allow users to make use of it?

LIGO + Docker Hub

- LIGO already provide various
 OS and application images on
 Docker Hub
- These are unpacked onto CVMFS


```
singularity shell
/cvmfs/ligo-containers.opensciencegrid.org/dockerhub/ligo/software:el7
```

```
singularity exec
/cvmfs/ligo-containers.opensciencegrid.org/dockerhub/ligo/software:el7 python
```

Automatic Singularity Environment

- Intend to give normal users an automatic Singularity LIGO environment
- But, allow power users to opt out, or to use own custom environment.
- Singularity image path stored in \$HOME/.singularity_image:
 - SINGULARITY_IMAGE=\$(cat \$HOME/.singularity_image)
- When users login automatically launch shell:
 - singularity shell -s /bin/bash \$SINGULARITY_IMAGE

Example Shell Login

```
paul@HopkinsThinkpad:~$ gsissh ligo.arcca.cf.ac.uk
....
Singularity: Invoking an interactive shell within container...
ligo-headnode/latest spxph@raven14:~$
    python -c "import lalapps; print lalapps.__file__"
/usr/lib/python2.7/dist-packages/lalapps/ init .pyc
```

3.17 Singularity Support

Note: This documentation is very basic and needs improvement!

Here's an example configuration file:

```
# Only set if singularity is not in $PATH.
#SINGULARITY = /opt/singularity/bin/singularity

# Forces _all_ jobs to run inside singularity.
SINGULARITY_JOB = true

# Forces all jobs to use the CernVM-based image.
SINGULARITY_IMAGE_EXPR = "/cvmfs/cernvm-prod.cern.ch/cvm3"

# Maps $_CONDOR_SCRATCH_DIR on the host to /srv inside the image.
SINGULARITY_TARGET_DIR = /srv

# Writable scratch directories inside the image. Auto-deleted after the job exits.
MOUNT_UNDER_SCRATCH = /tmp, /var/tmp
```

This provides the user with no opportunity to select a specific image. Here are some changes to the above example to allow the user to specify an image path:

```
SINGULARITY_JOB = !isUndefined(TARGET.SingularityImage)
SINGULARITY_IMAGE_EXPR = TARGET.SingularityImage
```

Then, users could add the following to their submit file (note the quoting):

```
+SingularityImage = "/cvmfs/cernvm-prod.cern.ch/cvm3"
```

Possible Issues and Workarounds

- Care must be taken to ensure HTCondor configuration is the same inside the environment as outside
- Can using _CONDOR_* environment variables or bind mount configuration files
- Note that Singularity is executed with --containall option:
 - Use minimal /dev and empty other directories (e.g. /tmp and \$HOME) instead of sharing filesystems on your host.
 - Contain not only file systems, but also PID, IPC, and environment
- Alternative solution is to use HTCondor USER_JOB_WRAPPER:

The Pegasus Problem - Scheduler Universe

- Pegasus is used by some LIGO workflows; it is a high-level workflow manager that runs in the scheduler universe.
- BUT, scheduler universe does not support SINGULARITY_JOB or USER JOB WRAPPER!?

@end

Tried, local universe, but Pegasus fails. Need to add environment variable:
 JOB_TRANSFORM_NAMES = SchedulerUniverse
 JOB_TRANSFORM_SchedulerUniverse @=end
[
 Requirements = JobUniverse == 7;
 SET_JobUniverse = 12;
 EVAL SET Env = strcat("CONDOR ID=", ClusterId, " ", Env);

Paul's Lament

- Doing lots of work to give users what they have elsewhere
- Shared file systems and dedicated sites prevent LIGO users from making use of Grid Resources, e.g. OSG and IRIS
- Trying to wean users off it via CVMFS, Singularity, Large scale CVMFS for data, including standard file locations.
- Would like to get Cardiff to accept GRID jobs, but need to convince HPC admins...

Suggestions welcome

