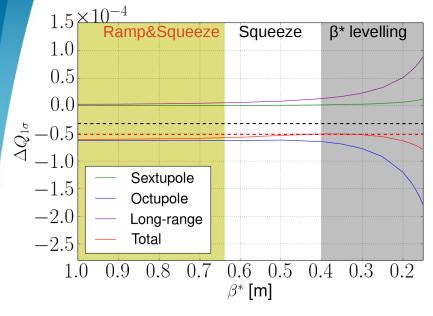
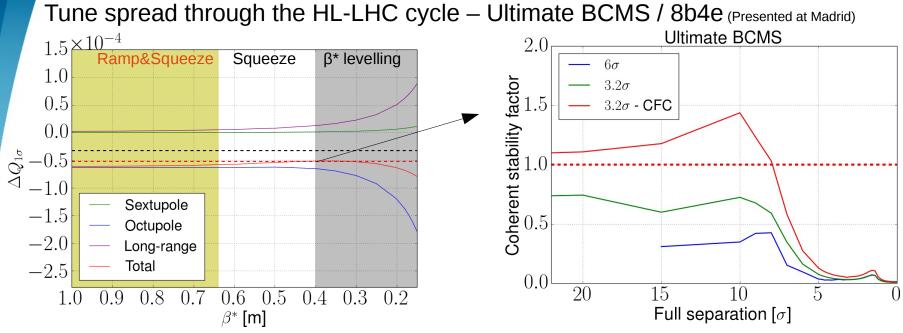


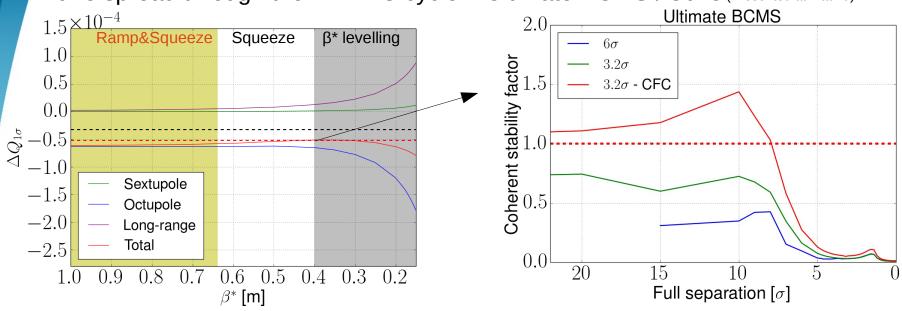
Beam stability : an update

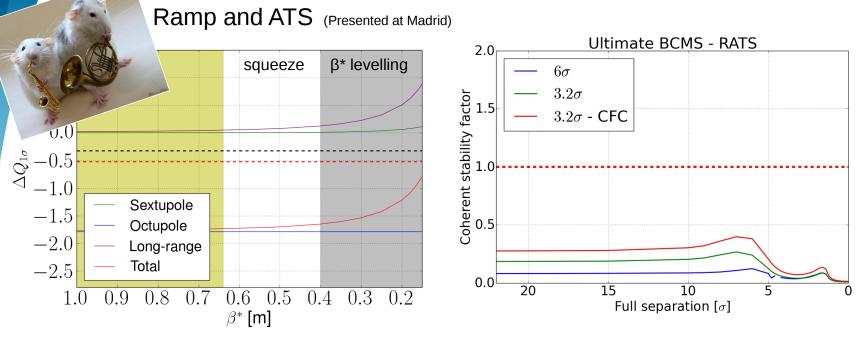
X. Buffat, D. Amorim, S. Antipov, L. Barraud, S.V. Furuseth, E. Métral


WP2 meeting - 12.06.2018

Content


- Coherent stability at top energy
 - Estimation of the telescopic index requirements
- Measured discrepancy and future tests
 - Decoherence and beam distribution
- Electron cloud effects at top energy
- Stability of coherent beam-beam modes

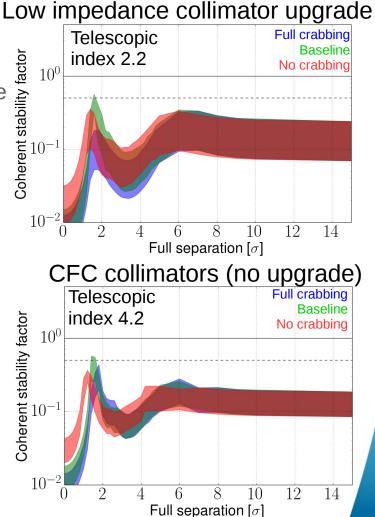

Tune spread through the HL-LHC cycle – Ultimate BCMS / 8b4e (Presented at Madrid)



Tune spread through the HL-LHC cycle – Ultimate BCMS / 8b4e (Presented at Madrid)

- The ultimate scenario with BCMS/8b4e beams is possible only with the upgrade ≻ of the collimators with low resistivity material (Mo+MoGR)
 - Despite the collimator upgrade, the stability margins remains above 0.5

- The beneficial impact of the ATS on the stability margins can be fully exploited by anticipating the telescopic part at the earliest stage, i.e. during the ramp
 - → Significant improvement of the stability margin



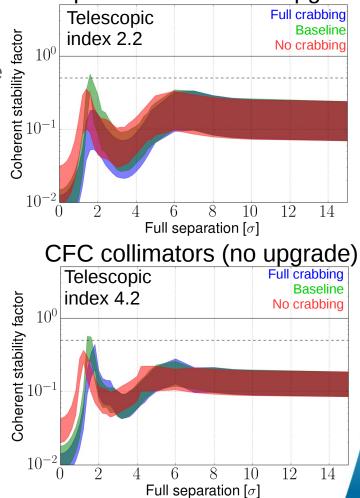
A telescopic squeeze is needed already at flat top to recover the stability margins of a factor 2, including the low impedance collimator upgrade (Ultimate BCMS scenario)

Low impedance collimator upgrade Full crabbing Telescopic **Baseline** Coherent stability factor 10_{-1} index 2.2 No crabbing 10^{0} 10^{-} 26 8 10 12 14 4 Full separation $[\sigma]$

- A telescopic squeeze is needed already at flat top to recover the stability margins of a factor 2, including the low impedance collimator upgrade (Ultimate BCMS scenario)
- The ultimate BCMS scenario without collimator upgrade would rely on a large telescopic index
 - Limits of the RATS still need to be estimated and tested (Round ATS MD, S. Fartoukh, et al.)

- A telescopic squeeze is needed already at flat top to recover the stability margins of a factor 2, including the low impedance collimator upgrade (Ultimate BCMS scenario)
- The ultimate BCMS scenario without collimator upgrade would rely on a large telescopic index
 - Limits of the RATS still need to be estimated and tested (Round ATS MD, S. Fartoukh, et al.)
- We define the required telescopic index based on the assumption that the beam stability has to be ensured through the process, with a factor 2 margin
 - The optimal at 6-10 σ is not necessarily the optimal at 1-2 σ

Low impedance collimator upgrade Full crabbing Telescopic Baseline Coherent stability factor 10^{-1} index 2.2 No crabbing 10^{0} 10^{-2} 2 8 10 12 14 Full separation $[\sigma]$ CFC collimators (no upgrade) Full crabbing Telescopic Baseline index 4.2 **Coherent stability factor** No crabbing 10^{0} 10^{-1} 10^{-1} 12 2 10 14 8 Full separation $[\sigma]$



- A telescopic squeeze is needed already at flat top to recover the stability margins of a factor 2, including the low impedance collimator upgrade (Ultimate BCMS scenario)
- The ultimate BCMS scenario without collimator upgrade would rely on a large telescopic index
 - Limits of the RATS still need to be estimated and tested (Round ATS MD, S. Fartoukh, et al.)
- We define the required telescopic index based on the assumption that the beam stability has to be ensured through the process, with a factor 2 margin
 - The optimal at 6-10 σ is not necessarily the optimal at 1-2 σ
- If those can be achieved, the beam stability would no longer be critical during offset luminosity levelling

Low impedance collimator upgrade

Separation [σ]	Equivalent octupole current [A] (Telescopic index)						
		Nominal			Ultimate		
	CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-10	-1250 (2.6)	-1000 (2.2)	-750 (1.7)	-1020 (2.2)	-900 (2.0)	-780 (1.7)	
1.5-2	-2500 (3.9)	-1000 (2.2)	-750 (1.7)	-2750 (4.2)	-900 (2.0)	-780 (1.7)	

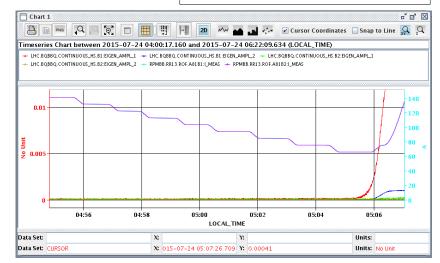
(a) $\varepsilon = 2.5 \mu m$

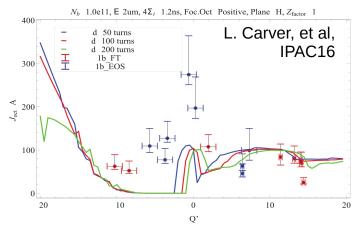
Separation [σ]	Equivalent octupole current [A] (Telescopic index)						
Separation [σ]	Nominal			Ultimate			
	CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-10	-1250 (2.6)	-1000 (2.2)	-750 (1.7)	-1020 (2.2)	-900 (2.0)	-780 (1.7)	
1.5-2	-2500 (3.9)	-1000 (2.2)	-750 (1.7)	-2750 (4.2)	-900 (2.0)	-780 (1.7)	
(a) $\varepsilon = 2.5 \mu \text{m}$							
Separation [σ]	Equivalent octupole current [A] (Telescopic index)						
Separation $[\sigma]$		Nominal			Ultimate		
	CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-10	-1500 (2.9)	-1200 (2.5) -	-1000 (2.2)	-1500 (2.9)	-1250 (2.6)	-1100 (2.3)	
1.5-2	-2300 (3.8)	-1300 (2.8) -	-1000 (2.2)	-2600 (4.0)	-1250 (2.6)	-1100 (2.3)	

(b) $\varepsilon = 1.7 \mu \mathrm{m}$

CÉRN

Separation $[\sigma]$	Equivalent octupole current [A] (Telescopic index)						
Separation [0]	Nominal			Ultimate			
	CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-10	-1250 (2.6)	-1000 (2.2)	-750 (1.7)	-1020 (2.2)	-900 (2.0)	-780 (1.7)	
1.5-2	-2500 (3.9)	-1000 (2.2)	-750 (1.7)	-2750 (4.2)	-900 (2.0)	-780 (1.7)	
(a) $\varepsilon = 2.5 \mu \text{m}$							
Separation $[\sigma]$	Equivalent octupole current [A] (Telescopic index)						
Separation [0]		Nominal			Ultimate		
	CFC	LS2 upg.	Full upg.	CFC	LS2 upg.	Full upg.	
6-10	-1500 (2.9)	-1200 (2.5)	-1000 (2.2)	-1500 (2.9)	-1250 (2.6)	-1100 (2.3)	
1.5-2	-2300 (3.8)	-1300 (2.8)	-1000 (2.2)	-2600 (4.0)	-1250 (2.6)	-1100 (2.3)	

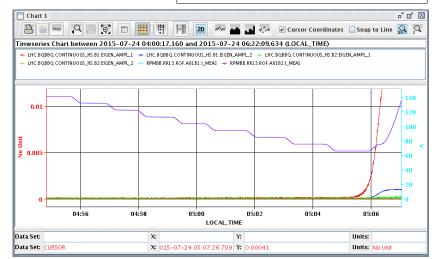

(b) $\varepsilon = 1.7 \mu \text{m}$

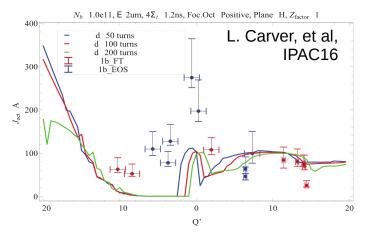

 The current target of a telescopic index of 3.3 at the end of the ramp covers all scenarios with at least the LS2 collimator upgrade

2015 : Step length ~ 1 min

Octupole threshold in 2015 and 2016

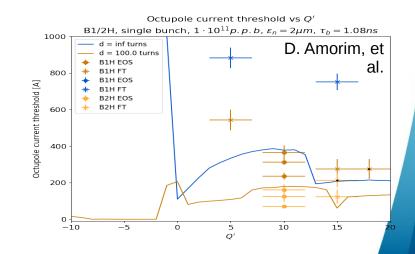
- Measuring the stability threshold by reducing the current in small and short steps, the instability starts within 30s after the octupole change
 - → Good agreement with DELPHI (at high chromaticity)




2015 : Step length ~ 1 min

Octupole threshold in 2015 and 2016

- Measuring the stability threshold by reducing the current in small and short steps, the instability starts within 30s after the octupole change
 - → Good agreement with DELPHI (at high chromaticity)
- Several instabilities were observed during ADJUST in 2016 (mainly during the execution of the TOTEM bump) with 490 A
 - → Large difference between experimental setup and operational configuration

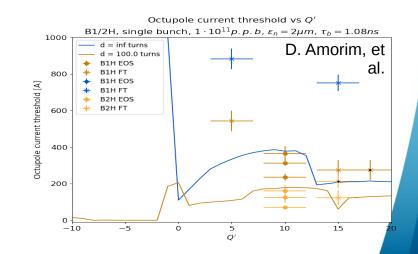


Octupole threshold in 2017

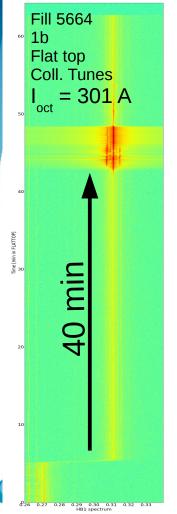
2017 : Step length ~ 8 min

- The instability started 4 minutes after the octupole current change
 - \rightarrow Disagreement with DELPHI also at high chromaticity by a factor ~2

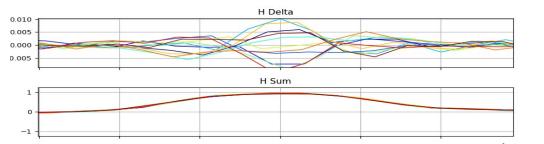
Octupole threshold in 2017


- The instability started 4 minutes after the octupole current change
 - \rightarrow Disagreement with DELPHI also at high chromaticity by a factor ~2
- The discrepancy with the model is also found in operational data

 \rightarrow To represent operational conditions, sufficient time as to be spent at each step of the octupole scan due to the instability **latency**



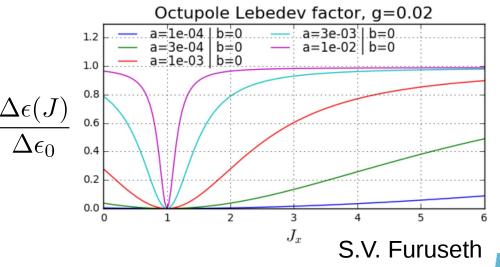
min


2017 : Step length ~ 8

Two observations of high latency at flat top in 2017

 At two occasions, single bunches became unstable when the beam was left untouched for tens of minutes

 \rightarrow Is an external excitation (hump-like) triggering the instability ? If so, what amplitude is needed ? (BTF MD, C. Tambasco, et al.)


 \rightarrow Are some machine parameters drifting without control ?

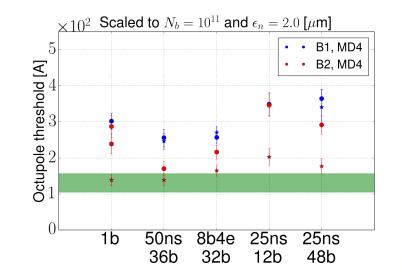
 \rightarrow Is the latency a fundamental aspect missing from our beam dynamics models ? (Latency MD)

Fill 6068 600b Flat top Inj. Tunes = 339 A0.29 0.30 0.31 HB1 spectrum 0.27

Decoherence and beam distribution

- Past simulations showed that a change of the distribution occur during the latency and could be the cause of a loss of Landau damping
 - \rightarrow Numerically heavy and prone to artefacts due to numerical noise
 - → Absence of fundamental understanding

Extending Lebedev's model for decoherence in the presence of linear detuning (octupoles), transverse feedback and noise, it is possible to show that the diffusion is non-uniform in phase space, leading to distortions of the distribution

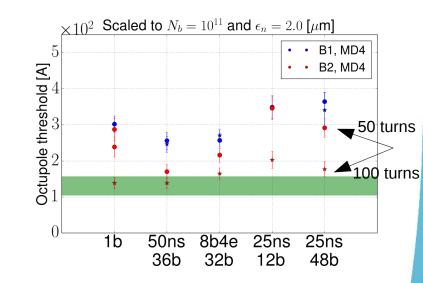


 \rightarrow Next step : consider consistently the effect of the impedance, within Vlasov perturbation theory

Electron cloud effects at flat top

The bunches at the end of 25ns trains is more critical than others, also at top energy

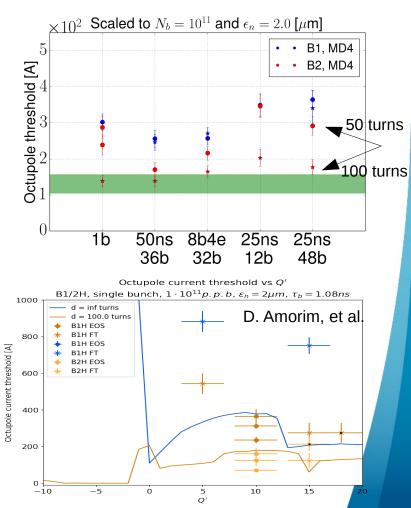
- The scaling of this contribution with higher bunch intensities is unclear (→ Dedicated MD with 12b trains)
- A semi-analytical model based on the CMM was developed by E. Gottlob (EPFL) in order to address this type of weak electron cloud effects at top energy



Electron cloud effects at flat top

The bunches at the end of 25ns trains is more critical than others, also at top energy

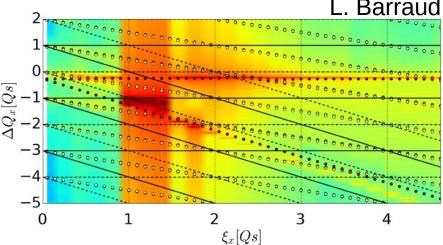
- The scaling of this contribution with higher bunch intensities is unclear (→ Dedicated MD with 12b trains)
- A semi-analytical model based on the CMM was developed by E. Gottlob (EPFL) in order to address this type of weak electron cloud effects at top energy
- A lower threshold was measured with a reduced ADT gain



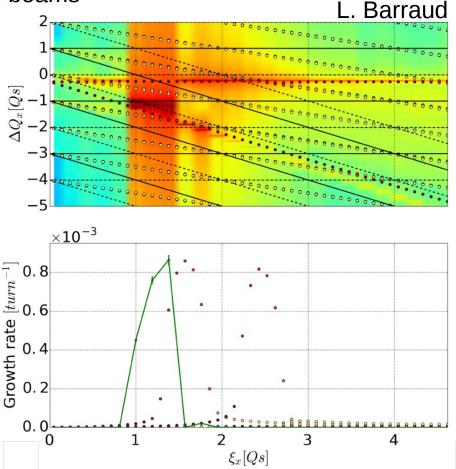
≻

Electron cloud effects at flat top

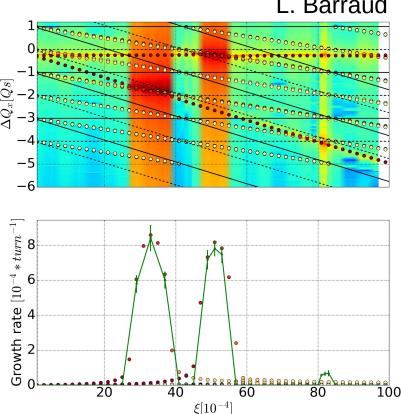
The bunches at the end of 25ns trains is more critical than others, also at top energy


- The scaling of this contribution with higher bunch intensities is unclear (→ Dedicated MD with 12b trains)
- A semi-analytical model based on the CMM was developed by E. Gottlob (EPFL) in order to address this type of weak electron cloud effects at top energy
- A lower threshold was measured with a reduced ADT gain
 - From single bunch MDs, it is also clear that the low ADT gain regime is not well understood
 - \rightarrow Optimum to be determined / understood in MDs

Mode coupling instability of colliding beams


- Varying the beam-beam tune shift, keeping the impedance effect constant (constant intensity), a coupling instability is observed when the coherent beam-beam mode frequency reaches the head-tail mode frequencies
 - Within the Yokoya factor and Landau damping, the BimBim and COMBI gives compatible results
 - This effect was observed in MDs (S. White, et al, PRSTAB 2013)

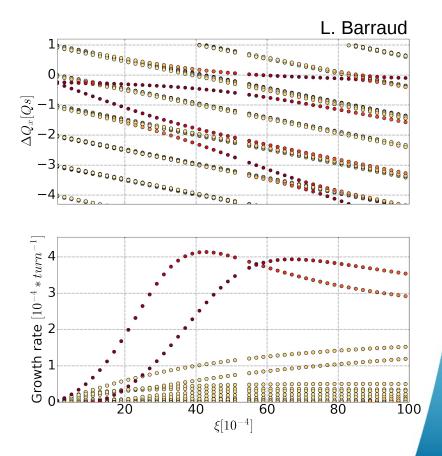
Mode coupling instability of colliding beams


- Varying the beam-beam tune shift, keeping the impedance effect constant (constant intensity), a coupling instability is observed when the coherent beam-beam mode frequency reaches the head-tail mode frequencies
 - Within the Yokoya factor and Landau damping, the BimBim and COMBI gives compatible results
 - This effect was observed in MDs (S. White, et al, PRSTAB 2013)

Landau damping of the mode coupling instability of colliding beams

Introducing a weak-strong beam-beam interaction in COMBI (e-lens like) to compensate the incoherent effect, leaving the coherent beam-beam effects

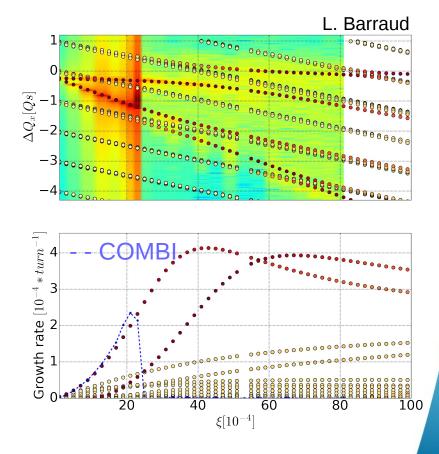
 \rightarrow Both the Yokoya factor and Landau damping are suppressed, leaving a perfect agreement between the two approaches


L. Barraud

Synchrobetatron coupling

While 4D effects were well studied, a good understanding of 6D effects (hourglass, crossing angle) was lacking

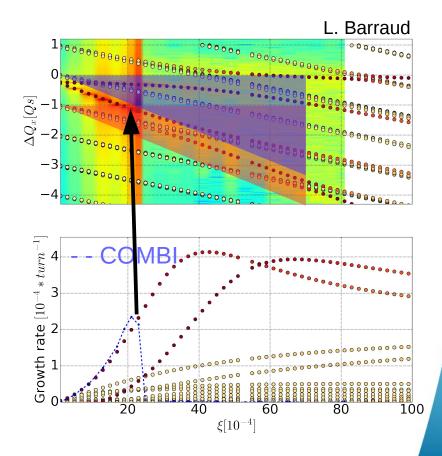
- Y. Alexahin predicted Landau damping from synchrotron sidebands
- Mode coupling instability of high order head-tail modes are possible due to synchrobetatron coupling
- → Implementation of a 6D coherent beam-beam kick in COMBI (+heavy usage of EPFL and CERN's HPC facility)



Synchrobetatron coupling

While 4D effects were well studied, a good understanding of 6D effects (hourglass, crossing angle) was lacking

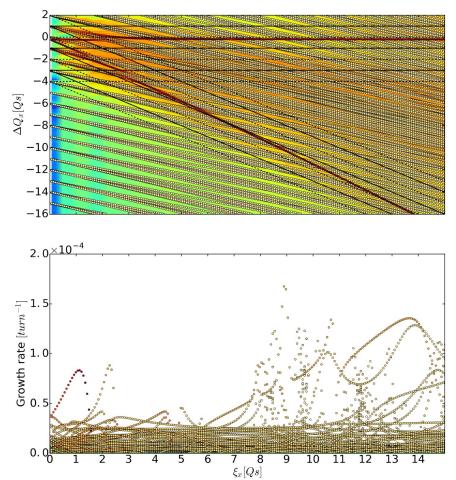
- Y. Alexahin predicted Landau damping from synchrotron sidebands
- Mode coupling instability of high order head-tail modes are possible due to synchrobetatron coupling
- → Implementation of a 6D coherent beam-beam kick in COMBI (+heavy usage of EPFL and CERN's HPC facility)



Synchrobetatron coupling

While 4D effects were well studied, a good understanding of 6D effects (hourglass, crossing angle) was lacking

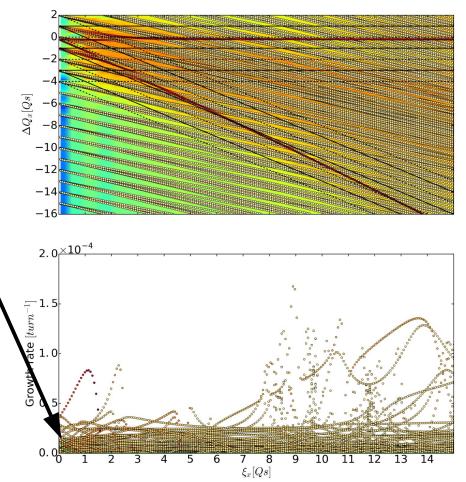
- Y. Alexahin predicted Landau damping from synchrotron sidebands
- Mode coupling instability of high order head-tail modes are possible due to synchrobetatron coupling
- → Implementation of a 6D coherent beam-beam kick in COMBI (+heavy usage of EPFL and CERN's HPC facility)



Mode coupling instability of colliding beams in the HL-LHC

Nominal configuration at the end of the squeeze with full intensity (pessimistic scenario)

 $\rightarrow\,$ Due to both hourglass effect and the remaining crossing angle at the IP, a forest of coherent modes appear

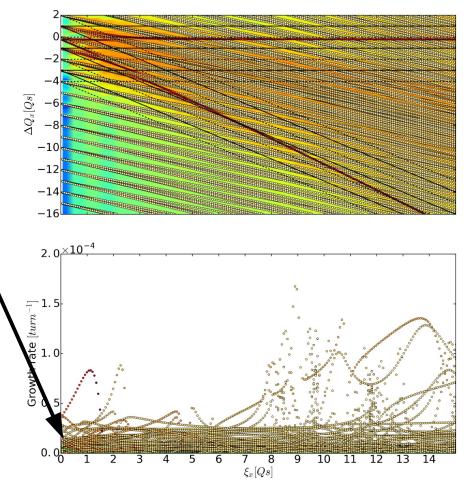


Mode coupling instability of colliding beams in the HL-LHC

Nominal configuration at the end of the squeeze with full intensity (pessimistic scenario)

 $\rightarrow\,$ Due to both hourglass effect and the remaining crossing angle at the IP, a forest of coherent modes appear

 Despite the pessimistic assumptions, the mode coupling instability of colliding beams is always well damped by the head-on tune spread, for ξ>Qs


Mode coupling instability of colliding beams in the HL-LHC

Nominal configuration at the end of the squeeze with full intensity (pessimistic scenario)

 $\rightarrow\,$ Due to both hourglass effect and the remaining crossing angle at the IP, a forest of coherent modes appear

- Despite the pessimistic assumptions, the mode coupling instability of colliding beams is always well damped by the head-on tune spread, for ξ>Qs
 - The weak beam-beam parameters are achieved only with a reduced intensity → not an issue for the operational scenario
 - To be kept in mind for offset levelling **at low** $β^*$

Summary

- A significant telescopic index is needed during the ramp / pre-squeeze to maintain the beam stability
 - The current target of 3.3 ensures the beam stability through the whole cycle with the negative octupole polarity for all scenarios with at least the LS2 collimator upgrade
 - In principle offset levelling in the main IPs becomes also a possibility in such a configuration
- Based on LHC experience, the design relies a factor 2 margin in amplitude detuning w.r.t. the predictions of the model
 - Without understanding of the cause, the scaling to HL-LHC parameters is not fully robust \rightarrow Experimental studies are planned and theoretical / numerical investigations ongoing
- > The scaling of electron cloud effects at top energy remains unclear
 - \rightarrow In principle a test with a high intensity 12b 25 ns train is possible
- The mode coupling instability model was extended to include 6D effects
 - The strength of Landau damping for the mode coupling instability of colliding beams was found sufficient for all scenarios of HL-LHC

