

Particle Track Reconstruction with ML

Michela Negro - Physicist (Department of Physics of University of Torino)

Fabian Gieseke - Data Scientist (Department of Computer Science of the University of Copenhagen)

What is the Idea and The Goal of The Challenge?

Original problem we started working on in Leiden: Given a set of simulated track, train a CNN to find the initial direction for each event!

menu .cart-icon-w ansparent header#top > li.current_page > li.current-menu-> a:hover > .sf-sutch-btn a:hover span,# > li.current-menu-its -salient-cart,.ascend t;color:#ffffff!impo r#top nav>ul>li.but **Particle Track Reconstruction** Michela Negro (michela.negro@to.infn.it) Fabian Gieseke (fabian.gieseke@di.ku.dk)

Initial Steps

Direct application of Convolutional Neural Nets (CNNs):

Next Steps & Tasks?

- Intensity or other quantity pixelated maps:
 - o **Input**: Single 2D image (or a group of 2D images) for each event
 - Output: Track energy, arrival direction, impact point (...)
 - **Performance**: True vs. predicted value and loss functions
 - ML: More sophisticated deep learning models taking the additional data into account ...

- Hits maps:
 - Input: 2D images of tracker layers for each event ...
 - Output: Number of vertices, energy, ...
 - **Performance**: Efficiency curves (?)
 - ML: Similar models as before (stack images). Interesting: Special, time component, maybe sequence models + CNNs.

Next Steps & Tasks?

- Showers in calorimeters:
 - Input: images (TBD)
 - Output: energy incoming particle, discriminate hadrons/leptons
 - **Performance**: TBD
 - ML: CNNs, maybe bidrectional
 - RNNs+CNNs

- Input: images (in time coincidence) from different cameras
- Output: main characteristics of the event (TBD)
- Performance: TBD
- ML: TBD

What is the idea and the goal of the project?

CNN training set up			
Raw experimental outputs	Input	Output	Performance evaluation
Intensity and/or other-quantity pixelated maps			
Tracker hits maps			
Showers in calorimeters			
Interferometers and telescope arrays			
•••			

Is data available? Could be data be generated?

- Generic 2D intensity maps can be easily produced
- Arrival time + intensity maps (TBD, MAGIC events?)
- Hits maps (TBD, Geant4 simulations?)
- Showers (TBD, Geant4 simulations?)

When does the project start?

 Already started (slowly going on), setting up common environments to work together and share files (github / gitlab / overleaf / google drive / ...?)

How can I partecipate? Who do I need to contact?

- Michela: Experimental Astroparticle expertise (space- / ground-based observatories)
- Fabian: ML expertise
- Needed: Experts from both worlds :-). For instance, experimental particle expertise (colliders), deep learning experts (LSTMs, CNNS,...), ...

Working via Slack, video meetings, etc...?

- Skype meetings (we already had two)
- E-mails threads
- Slack channel (planned :-))
- Near future: Joined remote hackathon!