INCLUSIVE ANALYSIS OF FERMI-LAT POINT Sources with Machine Learning

GABRIJELA ZAHARIJAS & LUC HENDRIKS

IDEA AND GOAL OF CHALLENGE

- Machine-learning algorithms used for screening and classification of unassociated sources based on γ-ray data only.
 - Mirabal+ (2016): to pinpoint potentially novel source classes
 - Saz Parkinson+ (2016): to classify UnA as likely AGN or PSR (including the likely type of pulsar) using timing and spectral information
 - Salvetti+ (2017, 3FGLZoo): classification UnA likely AGN as likely BLL or FSRQ

IDEA AND GOAL OF CHALLENGE

- ML techniques that can be used for point source identification
 - γ-ray only
 - Multi-wavelength
 - Timing information
- Find origin of unassociated sources
 - Classify in existing source classes
 - New source classes? Dark matter?

Three stages:

γ-ray data only

See how far we can get with $\boldsymbol{\gamma}\mbox{-rays}$ only. Reproduce past results

Add multi-wavelength

e.g. most γ -ray pulsars are found by looking at radio first

Add timing information

valuable because of pulsations or AGN flaring signatures.

- Start easy and make the problem more difficult and realistic step-by-step
- Stage 1 breakdown: γ-rays only
 - Start with 2 very distinguishable known sources, see if we can cluster them using an unsupervised method
 - Add a fictive source class that is different than those 2, see if the third is clustered separately
 - Move on to all known source classes except the unassociated one, add the fictive source class
 - Move on to all source classes with the unassociated one, remove the fictive source class (this would hopefully give an interesting result)

- Start easy and make the problem more difficult and realistic step-by-step
- Stage 2 breakdown: multi-wavelength
 - Follow same steps as stage 1, but add data from other wavelengths
 - Find correlations between the (x, y, frequency)-space
 - Hopefully a good deep network like approach can learn how to deal with the different kind of uncertainties

- Start easy and make the problem more difficult and realistic step-by-step
- Stage 3 breakdown: timing information
 - Follow same steps as stage 1, but add data from other wavelengths
 and timing information
 - This adds another dimension on the data which could be very valuable, for example for LSTMlike architectures
 - Probably very hard, see how far we can go

TIMELINE

Timeline

- <u>September</u>: first meetings to decide data generation and technical details
- October/November: data generation & testing ML methods
 - Iterative work, need quick feedback loops between generating data and testing ML methods
- December: prepare first results in time for the F2F meeting
- ML methods needed:
 - Computer vision (ConvNet / U-net / time-series analysis)
 - Unsupervised learning
- Contact people
 - Gabrijela Zaharijas & Luc Hendriks
- Join the Slack channel #fermi-point-sources!