New materials and techniques for channeling of relativistic particles

Ferrara

Alberti Alberto Antonini Andrea Benvenuti Elena Butturi Mariangela Fiorini Massimiliano Cruciani Giuseppe Guidi Vincenzo Martinelli Giuliano Milan Emiliano Rizzoni Raffaella Ronzoni Alessandro Tralli Antonio

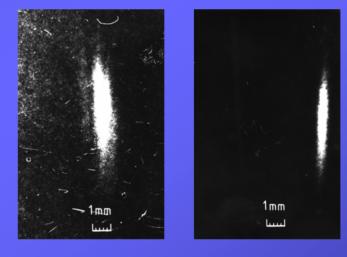
Legnaro

Della Mea Gianantonio Milan Riccardo Quaranta Alberto Vomiero Alberto Carturan Sara Negro Enrico Pieri Ugo Carnera Alberto

Collaborations:

CERN, Geneva, Switzerland Institute for High Energy Physics (Protvino) Petersburg Nuclear Physics Institute (Gatchina)

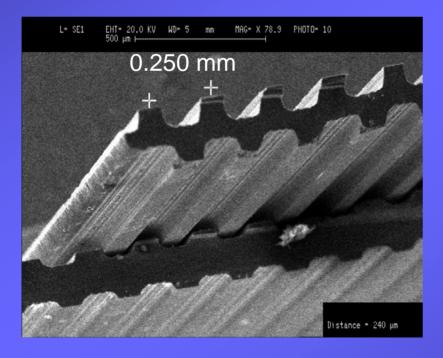
Outline


- Crystal fabrication
- Sample characterization
- Film with internal stress
- Novel materials for channeling
- Conclusions

Crystal preparation

Defects are induced by a dicing saw (a surface layer as thick as 30 µm is rich in scratches, dislocations, line defects and anomalies)

The samples are chemically polished by wet planar etching (HF,HNO₃,CH₃COOH).


70-GeV proton beam deflected by bent silicon crystals

Mechanically polished Chemically etched

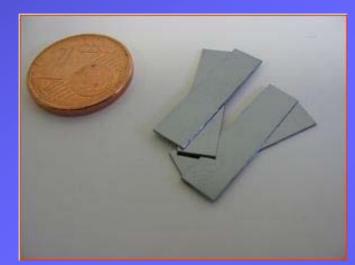
Crystal Dicing

Samples are achieved by dicing a Silicon wafer

Dicing at various speed and with different grain size of the diamond powders results in samples with diverse features

New lapping-polishing facility

Logitech lappingpolishing machine PM5

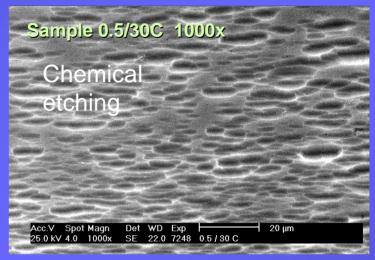

Logitech six-inch bonding station

Sample fabrication

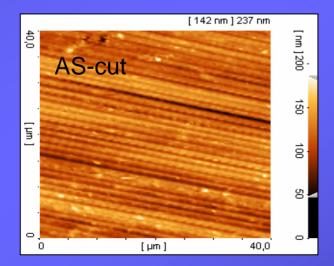
Wafer dicing.....

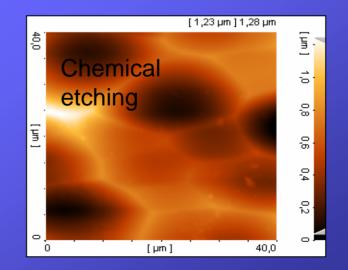
....assembling....

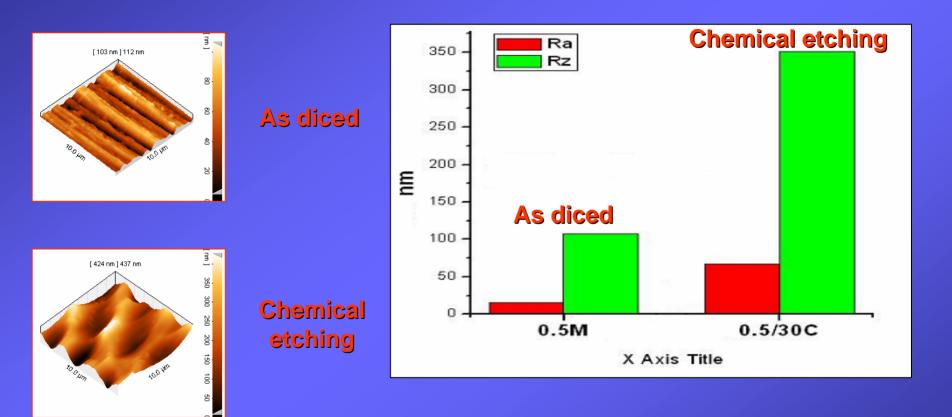




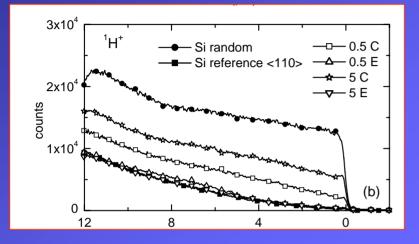
....mechanical treatment...

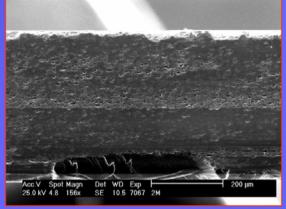

Chemical treatment


SEM and AFM- measurements



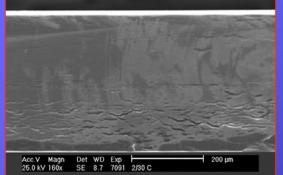
Chemical etching appears not to be performing...




Morphological characterization

Chemical polishing enhances standard roughness (R_a)

Structural characterization


As diced

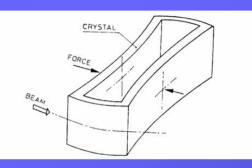
Rough and highly defected surface

RBS channeling results

• Successful correlation between surface crystalline perfection and post-dicing surface treatments

 Precise tailoring of sample preparation for crystal channeling

Chemical etching


Inhomogeneous surface BUT high crystalline degree

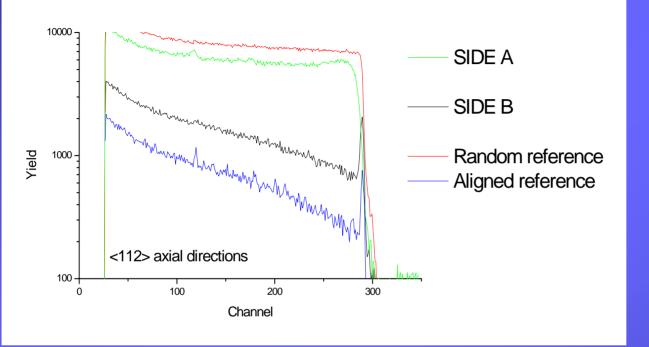
(Baricordi et al. APL 2005).

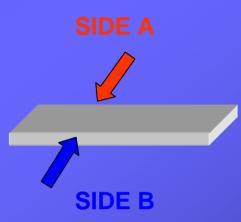
Characterization of samples from other labs

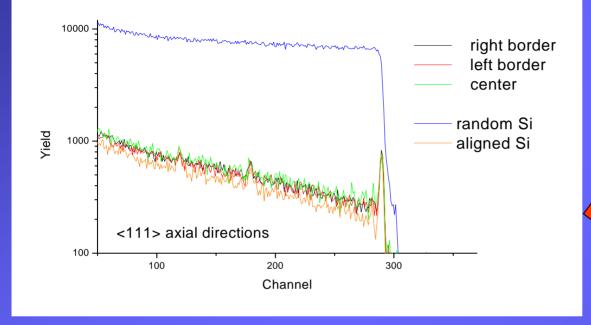
Samples

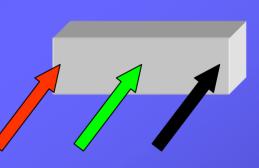
O-shaped

Labs


- IHEP (Russia)
- PNPI (Russia)


• Simple thin rod


Example of RBS-channeling analysis



- Different degree of crystalline perfection between SIDE A (nearly amorphous) and SIDE B
- SIDE B presents a highly defected surface with respect to perfect reference crystal

Example of RBS-channeling analysis

- Investigation on 2D spatial defect distribution: nearly perfect overlap of the spectra indicates homogeneous spatial distribution of defects
- The minimum yield is slightly higher than reference silicon, indicating low defects concentration and high crystalline order

Samples with internal stress: deposition of tensile thin films

A method for control of bending is obtained by a thin layer (or strips) of high stress intrinsic coating Si_3N_{4} .

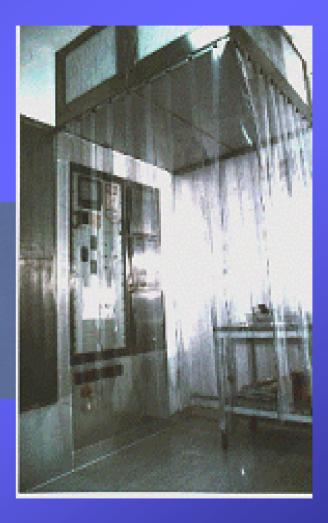
Our goal was to identify the optimal parameters of Si₃N₄ film deposition via low-pressure chemical vapour deposition (LPCVD).

$3\operatorname{SiCl}_{2}H_{2} + 4\operatorname{NH}_{3} \xrightarrow{\sim 750^{\circ}\mathrm{C}} \operatorname{Si}_{3}\mathrm{N}_{4} + 6\operatorname{HCl} + 6\mathrm{H}_{2}$

Ratio NH,/DCS 0.1 1 10 To obtain a high residual 3000 stress the NH₃/DCS ratio must be higher than the [3n] **HIGH STRESS** 2000 unity, but... Strain 1000 0 0.8 0.9 SiN, Uniformity Ratio Si/N o o mity Range/Thickr a Dep Rate (ang/min) 0 0 0 09 a good film thickness uniformity requires a er Unif Average | NH₃/DCS ratio lower than Across Wafe 20 the unity. 10 0 40 50 25 25

A trade-off is needed

end of the hoat showed the highest degree of non-uniformity. This SO $NH_{3}/SiCl_{2}H_{2} = 1:5$ Uniformity

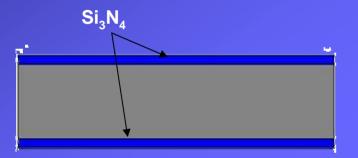

Source Boat Slot

n eff

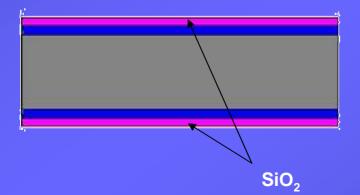
Our LPCVD Parameters

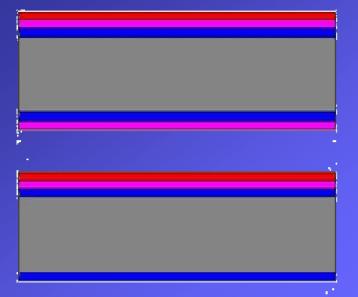
- Pressure: 300 mTorr
- Temperature: 825°C
- NH₃/SiCl₂H₂: 0.2
- Film thickness: 187 nm
- Residual stress = 400 MPa

- Silicon nitride provides a tensile film with adjustable stess
- It does not alter crystal quality like with microindentations



LPCVD reactor (LP-Thermtech) at Sensors and Semiconductor Laboratory


Deposition of Si₃N₄ layers

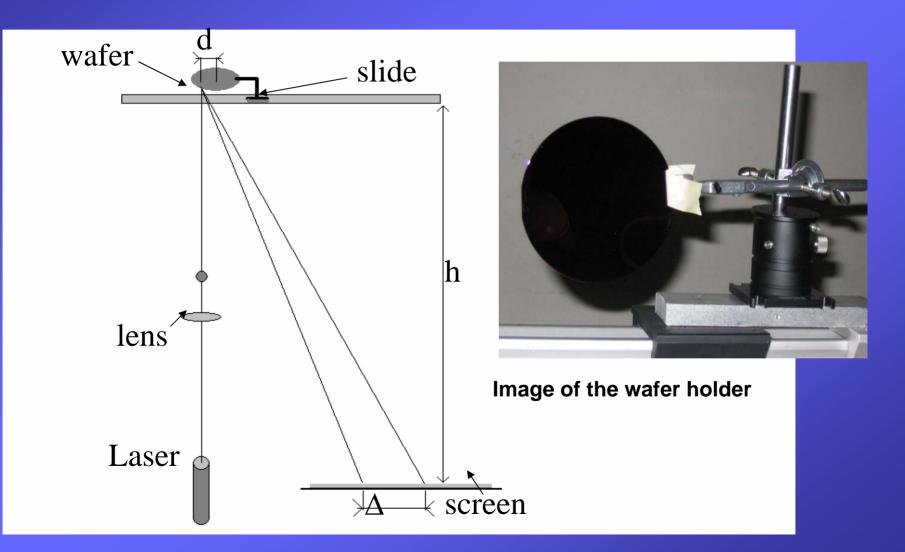

4" (111) oriented silicon wafer with thickness $h=200\mu m$ is started

200-nm-thick Si_3N_4 coating is deposited by LPCVD on both sides of the wafer

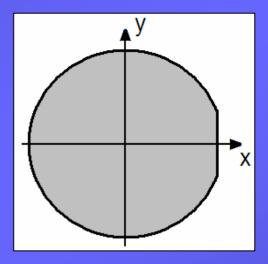
SiO₂ masking layer is subsequently deposited onto the Si₃N₄ by LPCVD

Deposition of a photoresist on the top

Selective etching of SiO_2 on the bottom by HF using the polymer as a selective mask

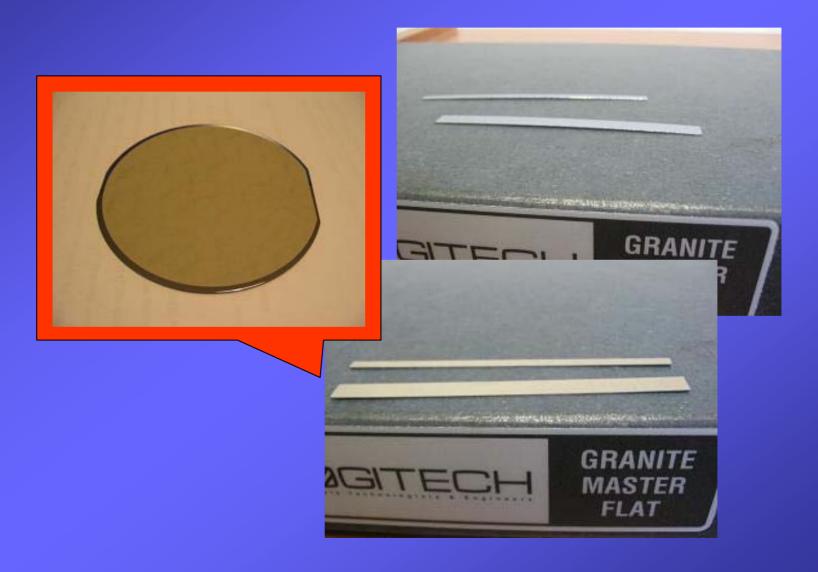


removal of the photoresist in acetone and removal of the Si_3N_4 in H_3PO_4


removal of SiO_2 on the top by HF. The tensile residual stress in silicon nitride (Si_3N_4) film induce a bending to the Si substrate

Optical characterization

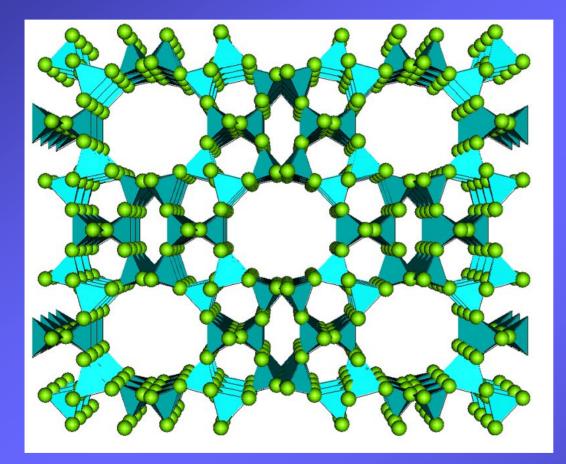
From Stoney equation:


$$\sigma_f = \left(\frac{E_s}{1 - \nu}\right) \cdot \frac{d_s^2}{6R_f d_f}$$

Values of radius and residual stress:

A x e s	wafer thickness (µm)	h (mm)	∆ (mm)	d (mm)	Radius R (m)	Young modulus Es (GPa)	Poiss on	Film thickness (nm)	Residual stress (GPa)	
x	200	5455	141	94	7,27	130	0,276	200	0,82	
у	200	5455	133	80	6,56	130	0,276	200	0,91	
								mean value	<u>0,87</u>	
x	300	5450	52	72	15,09	180	0,276	200	1,24	
у	300	5450	54	69	13,93	180	0,276	200	1,34	
								mean value	1,29	

Crystal bending through screen printing technique: preliminary samples



Screen printing technique: preliminary results

H (mm)	D (mm)	d (mm)	Radius of curvature (m)	Young modulus Es (GPa)	Poisson Sub	film thickness df (nm)	Residual Stress (GPa)	
5950	262	18	0.82	180	0.276	20000	0.10	
5950	272	15	0.66	180	0.276	20000	0.13	
5950	279	17	0.73	180	0.276	20000	0.11	
5950	240	14	0.69	180	0.276	20000	0.12	
5950	221	15	0.81	180	0.276	20000	0.10	
5950	183	14	0.91	180	0.276	20000	0.09	
							mean residual stress(GPa)	
							0.109160445	

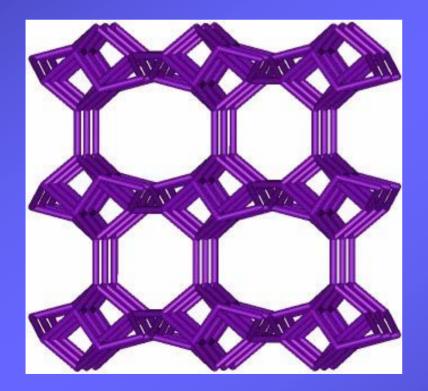
Film thickness permits to obtain a radius of curvature even smaller than 1 m

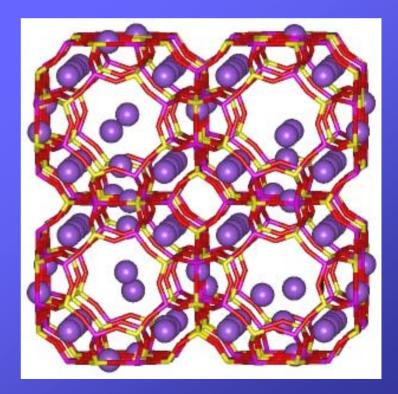
Novel crystals for channeling: zeolites

High acceptance for channeling in natural and artificial zeolites

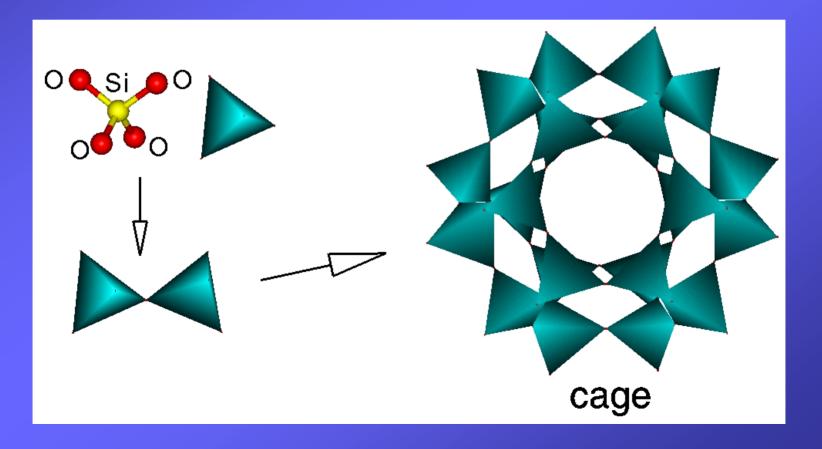
Simulation of potential candidates and characterization of samples

What a zeolite is?




Zeolite was the name given by the svedish mineralogist Cronstedt in 1756 to identify a class of natural minerals. On heating, desorption was so strong as it appeared as it were boiling (*zein* = to boil, *lithos* = rock).

Zeolite is...


Smith (1963): aluminosilicate with open three-dimensional tetraedric framework, containg cavities partly occupied by ions and water molecules

More technically speaking...

The primary building unit is a coordination tetraedron

Zeolites for channeling?

- Selection of candidates with rectilinear channels, availability of natural or artificial relatively wide crystals
- Simulation of efficiency for channeling with existing codes (iNTAS)
- Tests for channeling with MeV protons

Conclusions

- Fabrication of silicon samples
- Morphological, structural and optical characterizations
- Search for novel materials