Detectors for the INTAS experimental program

Massimiliano Fiorini

Università degli Studi di Ferrara

Meeting on Crystal Channeling 8 - 9 December 2005

INTAS PROPOSAL

- INTAS Proposal "Experimental study of crystal channeling at CERN SPS for use at the LHC in diffractive physics and halo cleaning", Ref. Nr 05-103-7525
- "a facility at CERN SPS for tests and characterization of crystals to be used for particle channeling studies in the SPS"
- <u>2 crystal stations</u>: deflection at large (some mrad) and low (200 µrad) angles
- station equipped with goniometers, crystal holders and particle detectors

RD22 experiment

- 120 GeV/c SPS proton coasting beam, 5x10¹¹ p
- 8.5 mrad bending angle
- extracted protons measured in external telescope:
 - scintillators for counting and triggering, FISC for monitoring
 - scintillating hodoscope to measure beam profile:
 - $3.2 \times 3.2 \text{ cm}^2$
 - 32 H + 32 V 1 mm strips (64 PMTs)
 - maximum rate per strip 10⁷ s⁻¹
 - detection efficiency 98%

First crystal station (1)

 external telescope to detect the protons extracted from the SPS through a crystal bent with an angle of some mrad (arrangement similar to RD22)

- DIRAC SCI-FI detector:
 - \Box 10x10 cm²
 - column pitch 0.44 mm
 - \Box 0.5 mm Φ fibers (0.28 mm prototype)
 - 16 channels PSPM
 - 5 fibers per pixel
 - for 2 planes 480 channels (30 PMTs)
 - spatial resolution: 127μm
 - time resolution: 650 ps at flux $2 \times 10^7 \text{ s}^{-1}$

PSPM

First crystal station (2)

- GEM detectors (TOTEM, COMPASS)
 - $\, \square \,$ good spatial resolution (~ 70 µm) with very high rate capability
 - the detector sensitive area can be tailored into the shapes required by the experiment

 AMS silicon microstrip tracker (spatial resolution of ~ 10 μm, thickness 300 μm)

Second crystal station (1)

- assembly of 2 Roman Pots to detect the particles bent by the first crystal at low angles (200 μrad)
- Roman Pots could be equipped with either silicon microstrips or scintillating-fiber detectors
- TOTEM Roman Pots:
 - Prototype installed and operated in SPS (2004)
 - access the beam vertically
 - stepping motors 5 μm resolution
 - vacuum requirements: ~10⁻⁷ mbar for SPS
 (primary) and ~10⁻⁴ mbar for pot (secondary)

Second crystal station (2)

- Silicon strip detector (TOTEM)
 - 3x3 cm², strip pitch of 50-100 μm, achievable spatial resolution of 10-20 μm
 - 200 μm window separates the detectors from the primary beam vacuum
- Scintillating fiber detector (ATLAS Luminosity)
 - 3x3 cm², 0.5 mm square fibers,
 10 fibers along track path
 - 10 layers of one plane staggered in multiples of 50 μm (spatial resolution of 20-30 μm)
 - 2 planes (X,Y) and a scintillator plate

