Probing *hhh* triple Higgs boson coupling at LHeC

Ruibo Li

Zhejiang Institute of Modern Physics Zhejiang University

Higgs boson

$$V(\Phi) = -\mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2 \rightarrow \text{scalar potential}$$

 $\mathcal{L}_H = D_{\mu} \Phi D^{\mu} \Phi - V(\Phi) \rightarrow \text{Higgs Lagrangian}$

$$\Phi(x) = \frac{1}{\sqrt{2}} {0 \choose \nu + h(x)}$$
 \downarrow electroweak symmetry breaking

$$\mathcal{L}_{h} = \frac{1}{2} D_{\mu} h D^{\mu} h - \frac{1}{2} m_{h}^{2} h^{2} - \frac{\nu \lambda h^{3}}{4} h^{4}$$

SM has not prediction of λ value \rightarrow direct measurement $\lambda = \lambda_{SM} = \frac{m_h^2}{2\nu^2} \approx 0.13$

Single Higgs production

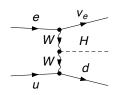
Higgs pair production is notorious small at LHeC → single Higgs production

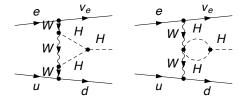
- \rightarrow Higgs self coupling contribution via the virtual effects of WWh at one loop
- \rightarrow explore the possibility of measuring *hhh* self coupling!

VBF production

Basic cuts:

$$|\eta_{\ell,j}| < 5$$
,


$$\Delta R_{E_T\ell} > 0.4$$
,


$$\not \! E_T > 10 \text{ GeV},$$

$$P_{Tj} > 20 \text{ GeV}.$$

$$\sigma = 80.16 \text{ fb}$$

hhh couplings contribution @ one loop! (unitary gauge)

Notice: We need consider Higgs wave function renormalisation contribution @ tree level!

Dividing λ contribution into two categories:

1. universal part: $\mathcal{O}(\lambda^2)$

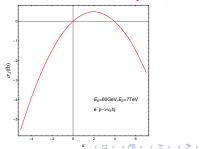
2. process-dependent: $\mathcal{O}(\lambda)$

There is a strong top-loop contribution(Higgs-top coupling) @ one-loop!

negative contribution because of fermion loop

Simulation and Preliminary results

Simulation:


- one loop calculation: FeynCalc, FormCalc, LoopTool.
- phase space integral: Vegas(Monte Carlo package)
- beam energy: $E_e = 60 \text{ GeV}$, $E_e = 7 \text{ TeV}$

Preliminary results:

- VBF single Higgs production @ tree level: 80.16 fb
- λ contributions @ one loop ($\lambda = \lambda_{SM} \approx 0.13$): 0.366 fb
- top-loop correction @ one loop: -16.78 fb (further check required)

 σ_{λ} : total cross section of λ contribution

$$\kappa = \frac{\lambda}{\lambda_{SM}}$$

