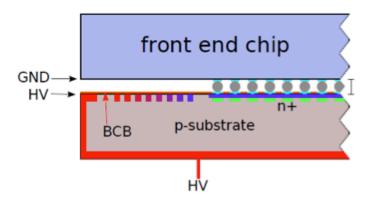


Modules

Malte Backhaus

Outline

- Introduction to current activities in IT module WG
- Project schedule
- Barrel vs. disc modules
- Considerations on HDI design for serial powering
- Update of TBPX 2x2 RD53A HDI design


IT module WG activities

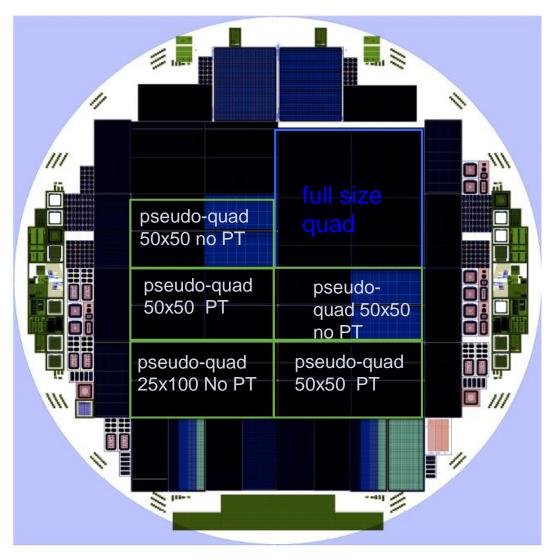
- Focus on RD53A modules this year.
- Plan to build ~100 RD53A modules, number in good agreement with "orders".
 - 2x2 modules and 1x2 modules
- Sensor production by two vendors: FBK and HLL. Agreed to share the area with ATLAS.
- Purpose is **not** sensor or chip or BB validation, but
 - Module construction and testing procedure
 - Module component R&D (HDI, encapsulation, module rails, ...)
 - Validation of thermal simulations on prototype mechanics
 - Serial powering validation (realistic SP chains)
- "Pseudo-2x2" modules consisting of two 1x2 chip sensors (diced to single piece)
 - → Larger gap between ROCs, 900µm inactive distance in y-direction 300µm active distance in x-direction
- Larger thickness of ROCs to increase mechanical stability

IT module WG activities

- Additional topics of the year:
 - Passive material irradiation
 - Power connector
 - eLink connector
 - AC-coupling scheme of eLinks
 - Adapter PCBs
 - Module test system
- Additional topics next year:
 - Spark mitigation on modules (in sensor WG)
 - Wire bond protection
 - Assembly procedures
 - Start development of production test program

RD53A module count

- Result of poll in good agreement with previously estimated number of modules.
- Price per module between 1.5kCHF and 1.9kCHF, to be reimbursed by institutes.

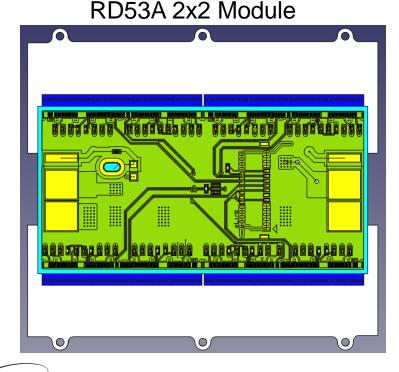

la stitute	Contract	1x2	2x2	1x2		2x2	Commont
Institute	Contact	dressed	dressed	bare		bare	Comment
INFN Milano Bicocca	Mauro Dinardo		1	1	0	(
Instituto de Fisica de Cantabria (CSIC-UC) -							
Santander	Ivan Vila		0	0	10	(
ITAINNOVA	Alvaro Pradas		2	0	0	(to be received from Santander
PSI	Wolfram Erdmann		0	0	0	۷	
ETH Zurich	Malte Backhaus		0	0	0	20	includes modules for SP demonstrator
University Hamburg	Georg Steinbrück		0	2	0	4	
US	Karl Ecklund		3	3	0	4	4 to be decided later
	Andrei						
Zagreb	Starodumov		0	0	3	(
	Giacomo						
Florence	Sguazzoni		2	15	0	(
	Jorgen						
CERN	Christiansen		12	12	0	(
Sum of type		1	18	33	13	32	
Total						96	

 \rightarrow TEPX: ~7 modules

- \rightarrow TFPX: ~10 modules
- \rightarrow TBPX: ~79 modules

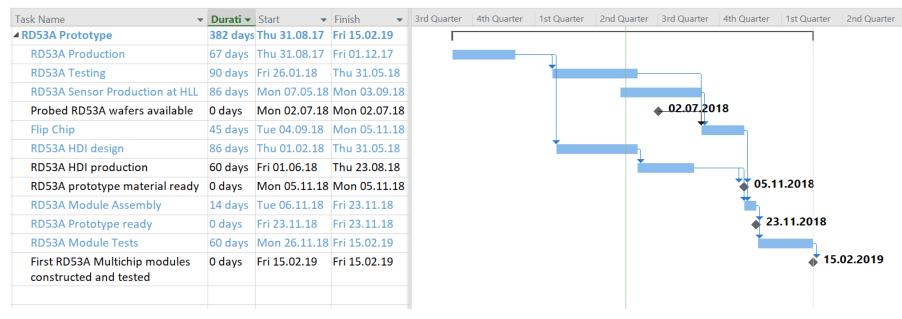
RD53A module sensor production: HLL

- Design by A. Macchiolo, MPI Munich.
- Productio ongoing
 → Ready in September
- UBM, BCB, and thinning at HLL.
- Agreed with ATLAS to share the wafer area
- Several large structures:
 - One ATLAS "full size" quad
 - Five RD53A 2x2 sensors (1x2 sensors, dicing to 2x2)
- 20 Wafers in production:
 - 12 wafers of 100µm thickness
 - 8 wafers of 150 µm thickness


RD53A module sensor production: FBK

- Silicon wafers ordered from ICEMOS
 → Delivery expected (as of yesterday): July 2018
- 20 wafers, 150 µm SiSi direct bonded
- Processing at FBK should start in June to avoid significant delay
 → Need to order masks by mid-June
 → Sensors available by end of 2018
- Design started based on existing structures (guard rings, pixel cells, ...)
- ATLAS interest in shared FBK produktion vanished
 → This is our production now. Agree next week for structures to place on wafer layout

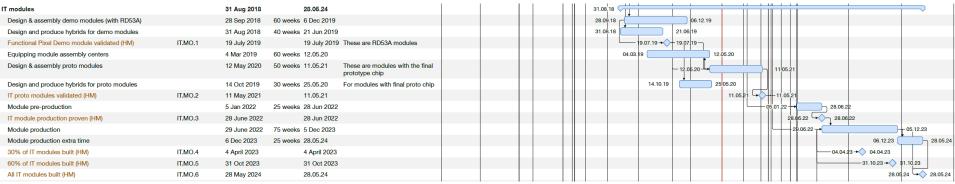
RD53A module dimensions


- Drawing of RD53A 2x2 module with realistic dimensions
 - Larger gap between ROCs
 - Module Rail dimensions (fixation) compatible with final module, stretched in y-direction
 → used dimensions of TBPX mechanics drawings. Need revision.

0 0 A H T N 1111 01 0

Final PROC 2x2 Module

Updated schedule for first few modules



- Schedule updated.
- With started HLL production we are well on schedule to meet milestone 6 month earlier (see next slide).
- Next uncertainty: availability of probed RD53A wafers. Probing independent of Bonn by ~August would be beneficial.
- FBK sensors available later, ~November 2018. Wafers ordered, expected May/June.
- Will build modules without sensors as soon as HDI and chips available.

Overall Tracker Schedule

Screenshot of latest Tracker Upgrade Schedule

- RD53A prototype modules:
- Prototype modules (final ROC):
- Production capability proven:
- Module production:

- $19/07/2019 \rightarrow 6$ months ahead
- 11/05/2021
 - 28/06/2022

06/2022 - 01/2024 (+ 6 months safety margin)

- \rightarrow Six months ahead with RD53A modules, but not incredibly large time for R&D left.
- → Keep progress high and streamlined. But look also sideways from baseline: Al in HDI for supply current, other SP options, novel sensor techn., …

Module differences between barrel and discs

Geometrically very different constraints:

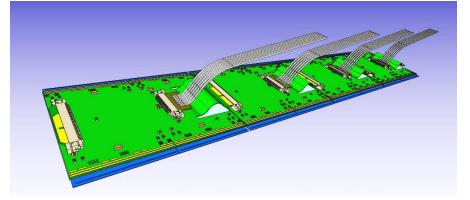
- Connector positioning (esp. power connector) should be different:
 - → barrel modules: current-in on one end, current-out on opposite ends
 - \rightarrow disc modules: current-in and current-out on both wire bond sides or on same end
- Module fixation
 - \rightarrow barrel modules on the wire-bond side
 - \rightarrow disc modules on the ends
- In TFPX inner ring: factor ~5 difference in TID within one ROC (factor 7 per sensor)

 \rightarrow if along columns (current design), independent bias setting per DC easily possible, current/voltage mirrors per DC present in RD53A

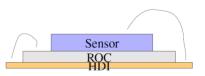
- → Electrical and mechanical constraints of HDI are very demanding (see later slides)
- → Same HDI for barrel and disc structures leads to additional complications
- \rightarrow Plan with dedicated designs

Module Connections

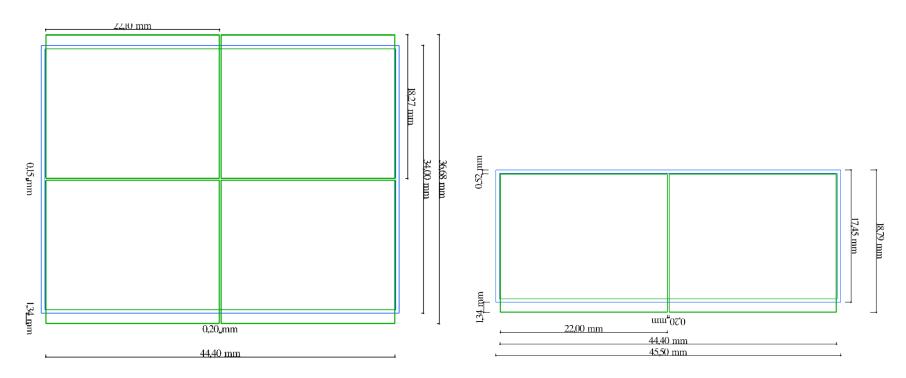
ТВРХ


Module connection design converging:

- Pigtail + ZIF power connector
- Independent eLink connector
- Return current on module (change of mechanical support would be needed to route the return current on the "ladder" or "stave" backside)


TEPX/TFPX

Connection designs under investigation:

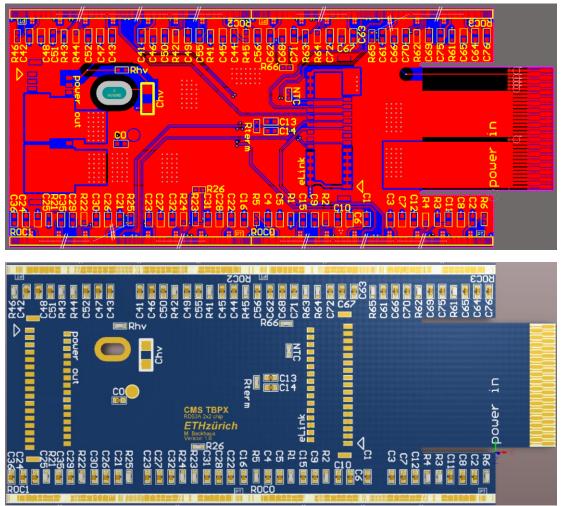

- Pigtail HDI extension from module to module
- Laminate HDI on disc and wire-bond down
 - "best" for current routing sideways (ATLAS investigates flex cable over wire-bonds)
 - Module replacement?

Final module dimensions

- Module dimensions for the bump bonding market survey
 - ROC sealing ring and dicing line included
 - 200 um spacing between ROCs in x, \geq 150 um in y
 - \rightarrow all ROC edge pixels are 50 um x 200 um
 - \rightarrow all ROC corner pixels are 200 um x 200 um
 - 450 um inactive edge in sensor

HDI design

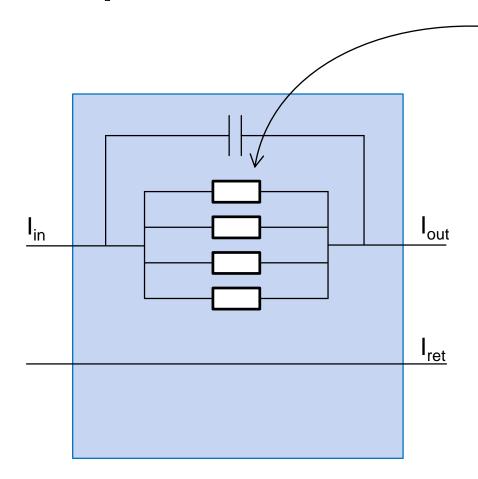
- Many guidelines for HDI design in:
 - Module design workshop (https://indico.cern.ch/event/681506/)
 - Alvaro's presentation in IT modules meeting (<u>https://indico.cern.ch/event/668468/contributions/2866651/attachments/1588089/2511705/PCB_design_recommendations_VF3.pptx</u>)
 - Discussions with Alan Honma
- Started design for RD53A 2x2 TBPX prototype modules.
- Design files in CERN Gitlab repository during development, in sharepoint once submitted. Inform me if you like to get access.
- Created libraries with the footprints etc. for easy sharing.
- Currently in contact with one possible vendor, also used for OT hybrids.
- Design started to have a good base for discussion with vendors.
 → submission planned next week

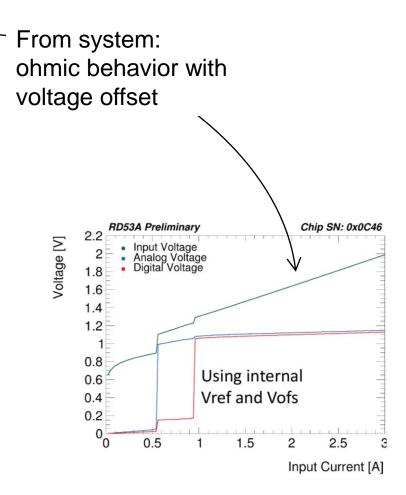

HDI Requirements

- Clearance driven by wire-bond pad frame
 - If possible on HDI: single row, no fanout, >50um wide pads
 - ROC: 100um pitch
 - → Chose 60um wide pads, 40um clearance (updated last week)
 → 10um copper thickness and ENIG/ENEPIG gold-plating possible with larger clearance
- High voltage design
 - More challenging due to distribution from module to module
 - Clearances, design constraints, etc. to be discussed with vendor next week
- Supply current distribution
 - Up to 8A in I_{in} and also I_{ret} on final modules, ~1/2 on RD53 modules
 - Low as possible resistance difference between parallel chips
 - Need a plane on stable potential for shielding + return current routing on the module (TBPX)
 - \rightarrow Use Bottom Layer as "local module GND" plane
 - \rightarrow Use Top Layer as I_{in} plane
 - → Use middle plane for return current routing
- Radiation tolerance
 - Activation
 - Glue delamination
 - \rightarrow To be validated

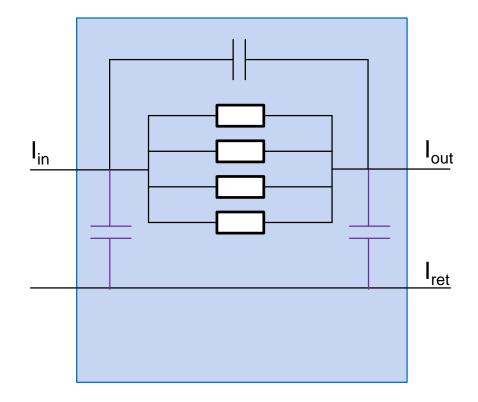
Overview

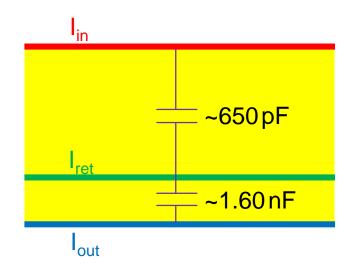
- For now: Phase 1 BPix ZIF connector for eLink (lack of existing alternative...)
- Phase 1 Bpix ZIF connector for power
- 0402 SMD components
 → possibility for manual replacement
 - → later 0201 possible where voltage rating allows

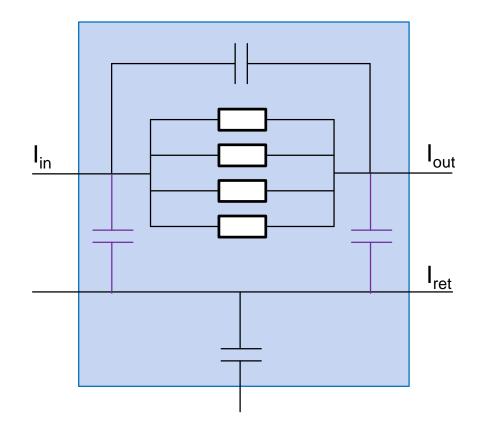

TBPX HDI layer stack

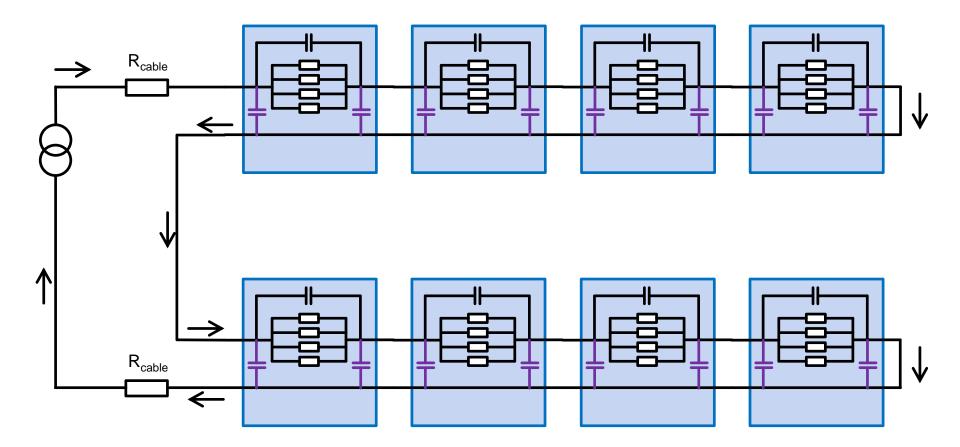

- Two major challenges:
 - Impedance and DC-resistance of eLink routing
 - Power dissipation in supply current and return current routing (of serial powering chain)
- Added a solid copper plane for return current routing
 - \rightarrow "closest possibility to a GND plane"
 - \rightarrow No problem in power dissipation of return current
 - \rightarrow crossing of signal lines (down-link) on bottom plane, still solid copper plane shielding the eLinks.
- Input current to chips on top layer plane
- Output current (input to next module) on bottom plane

	Layer Name	Туре	Material	Thickness (mm)	Dielectric Material	Dielectric Constant	
	Top Overlay	Overlay					
	Top Solder	Solder Mask/Coverlay	Surface Material	0.01016	Solder Resist	3.5	
	Top Layer	Signal Copper		0.01			
	Dielectric 1	Dielectric	Core	0.03	Polyimide	3.2	
	Internal Plane 1	Internal Plane	Copper	0.01			
	Dielectric 2	Dielectric	Film	0.012		3.2	
	Bottom Layer	Signal	Copper	0.01			
	Bottom Solder	Solder Mask/Coverlay	Surface Material	0.01016	Solder Resist	3.5	
	Bottom Overlay	Overlay					

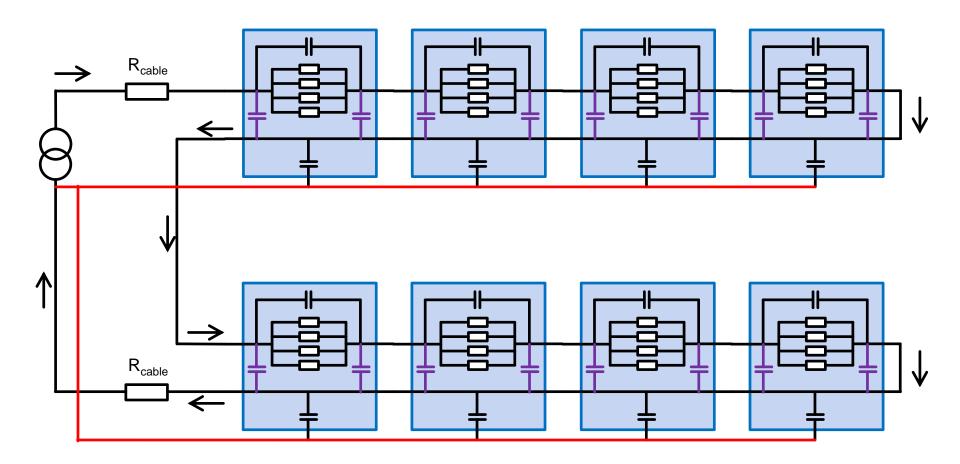

Simplified module

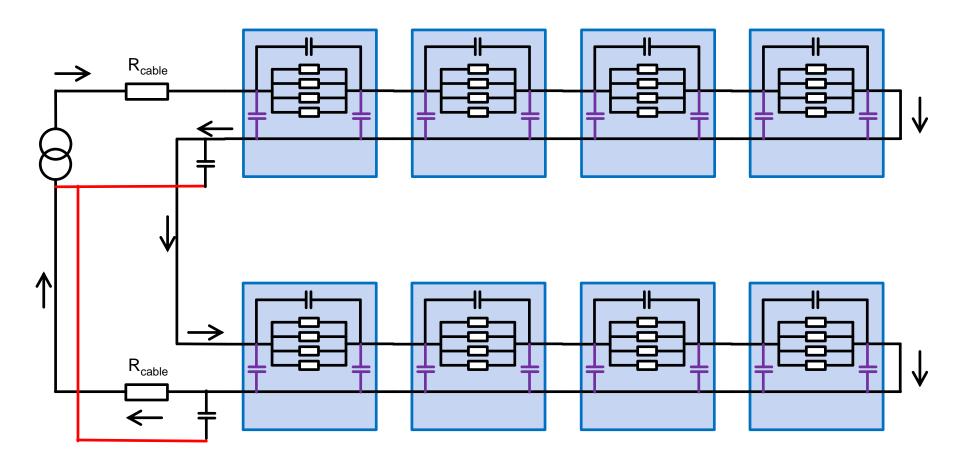



Parasitic capacitances


AC-coupled "GND plane": I_{ret}

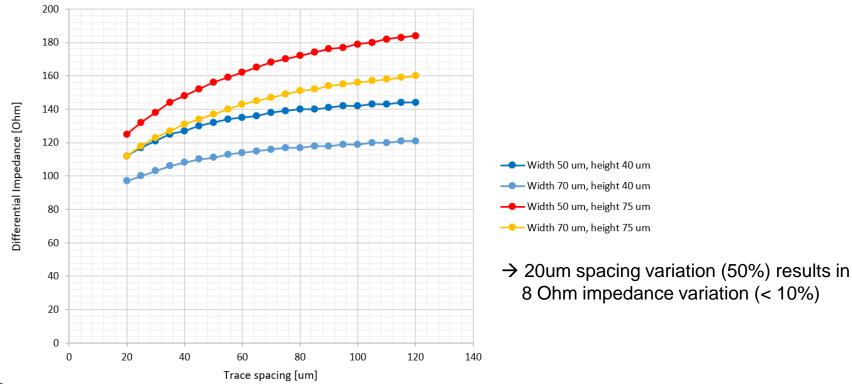
- Discussions with grounding and EMI experts ongoing
- ATLAS experts request a DC-coupled GND plane on each module "for shielding"
 - → I (and also ATLAS module experts) don't understand why, it must not be connected anywhere and is just parasitically AC-coupled...
- Discussion with Fernando and Alvaro: add an optional cacitance connected to system GND to stabilize the I_{ret} plane →" AC-coupled GND plane"
- → This allows to modify the resonance frequency of the circuit.

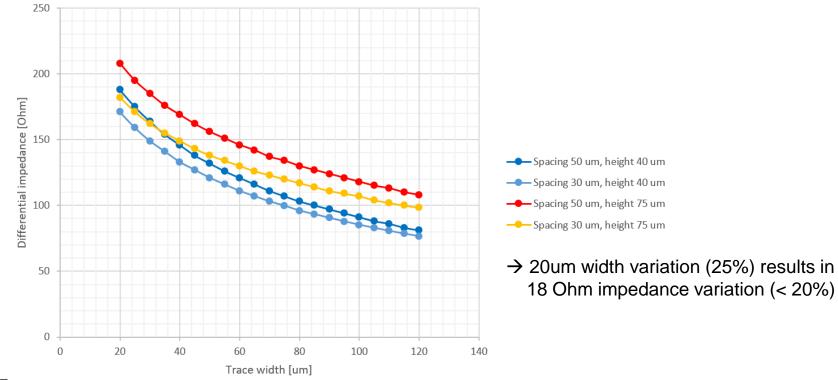

Serial Powering Chain without AC-coupled I_{ret}


Serial Powering Chain with AC-coupled I_{ret}

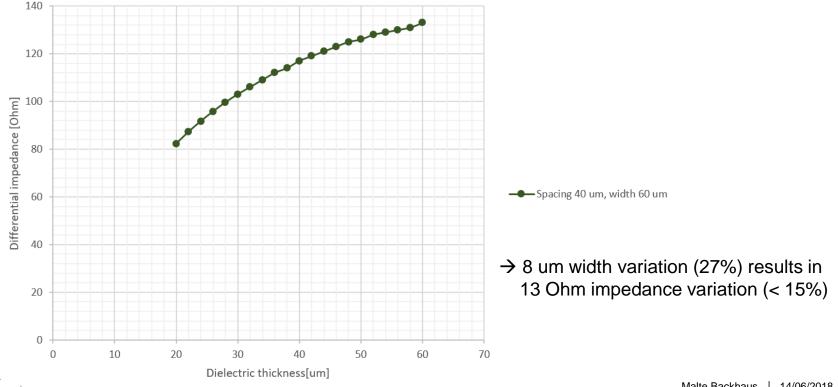
Option 1

Serial Powering Chain with AC-coupled I_{ret}


Option 2


LVDS differential impedance: trace spacing

 Calculated the differential impedance for different dielectric thicknesses, trace widths, and trace spacings


LVDS differential impedance: trace width

 Calculated the differential impedance for different dielectric thicknesses, trace widths, and trace spacings

LVDS differential impedance: trace width

 Calculated the differential impedance for different dielectric thicknesses, trace widths, and trace spacings

LVDS line check

- Alvaro and Fernando (ITAINNOVA) are checking with HSS-Siwave
 - Impedance simulation,
 - Power distribution,
 - Crosstalk,
 - Noise

based on the actual layout

- DC resistances:
 - < 0.6 Ohm per line, ~1.2 Ohm per link (on HDI only)</p>

HDI power consumption: rough estimation

Assume half current (RD53A vs. final ROC) at half area...

- \rightarrow 4 chips x 1 A max. = 4 A
- On pigtail:
 - Length: 4.5 mm, width: 3.8 mm, thickness: 10 um
 - → pigtail resistance: <0.2 Ohm per line
 - \rightarrow power consumption pigtail: < 2 x 32 mW (I_{in} + I_{ret})
- On module:
 - I_{in}: estimated current and resistance of long wires and bottlenecks
 → power consumption: ~75 mW
 - I_{out}: estimated current and resistance of long wires and bottlenecks → power consumption: ~40 mW
 - Iret: plane + connector routing
 → ~30 mW

Total: ~210 mW !

 \rightarrow Significant power consumption on the module HDI

Summary

- Phase 2 module developments started last year
 WC can build an aignificant experience in two CMS pixel de
 - \rightarrow WG can build on significant experience in two CMS pixel detectors, and also ALTAS
- Now work concentrates on RD53A modules
 - HDI
 - test system
 - assembly procedures
 - \rightarrow they will be one of the work horses for further R&D:
 - Wire bond protection
 - Spark mitigation
 - eLinks
 - serial powering system validation
 - etc.
- A lot of further interesting ideas around. Although time is limited, we should look also away from baseline...

