

TFPX/Modules Considerations

Matthew Jones - Purdue University Some slides for the June 2018 EPIX/FPIX Workshop

The outline of this talk is (not surprisingly) quite similar to the talk prepared for the May tracker week.

- 1. Understanding electrical and mechanical constraints for HDI design
 - Mainly focusing on 1x2 HDI design
- 2. Thermal mock-up modules
- 3. Parylene-N coating for spark mitigation

- Tightly coupled electrical/mechanical/thermal constraints
- Need a relatively realistic design to begin meaningful discussions with flex circuit vendors
- Necessary to understand which components and materials need to be qualified for radiation hardness using inexpensive test structures

Basic material properties:

Material	X ₀ (cm)	λ _l (cm)	к	G (mho/cm)
Silicon	9.370	46.52	-	-
Copper	1.436	15.32	-	5.959 x 10 ⁵
Aluminum	8.897	39.70	-	3.500 x 10 ⁵
Polyimide	28.57	60.20	4.3	-
G10-FR4	16.76		4.5	-

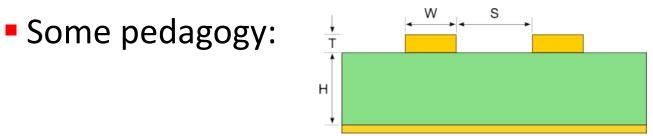
Properties of conductor planes:

Material	Thickness (μm)	X ₀ (%)	G (mho)
¼ oz Copper	8.75	0.061	521
½ oz Copper	17.5	0.122	1042
Aluminum	14.9	0.017	521
Aluminum	29.8	0.033	1042

Zeroth order geometry:

						10 mm	Î.	Load
	•			40 mm				
Nom	inal cur	rent: <i>l</i>	= 5 A	1				
	Material	t (um)	X/X0(%)	R (mΩ)	ΔV (mV)	P (mW)		
	1/4 oz Cu	8.75	0.122	15.34	76.71	383.57	$\overline{}$	
	1/2 oz Cu	17.5	0.244	7.67	38.36	191.79	\rightarrow	
	Al	8.75	0.020	26.12	130.61	653.06		
	Al	15.00	0.034	15.24	76.19	380.95		
	Al	30.00	0.067	7.62	38.10	190.48		
	5/30 Cu/Al	35.00	0.089	5.93	29.67	148.37		

Aluminum might reduce radiation length by factor of 4.

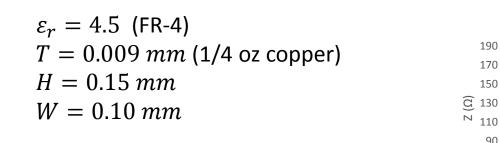


Conductor Plane Designs

- Radiation length of sensor+ROC is about 0.4%
 - Assuming a 200 µm thick sensor and a 150 µm thinned readout chip, not including bumps
- Half-ounce copper would amount to 40% of the total radiation length.
 - Total radiation length is 0.61% X₀
- 5/30 µm copper clad aluminum foil would be 20% of the total radiation length.
 - Total radiation length is 0.46% X₀

 Disadvantage of aluminum is that vias between layers are problematic.

$$Z = \frac{(174 \ \Omega)}{\sqrt{\varepsilon_r + 1.41}} \log\left(\frac{5.98 \times H}{0.8 \times W + T}\right) \left(1 - 0.48 \ e^{-0.96S/H}\right)$$


190

170

150

90 70 50

Typically only good enough for scaling relations

Differential Impedance

0.12

0.14 0.15 0.16 0.18 0.19 0.20 0.21

0.17

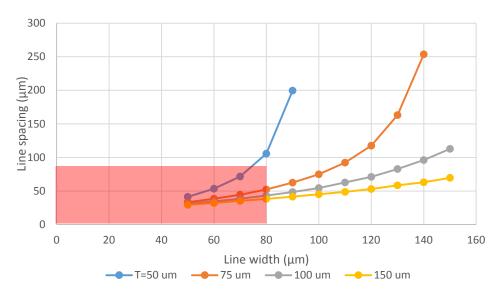
Analytic Z (Ω) — Allegro Z (Ω)

S (mm)

0.24

Differential Pair Designs

- HDI technology determines minimum trace with and spacing
- Larger values have advantages:
 - More vendors will place bids
 - Yields will be higher
 - Cost will be lower
 - Lower project risk
- Typical design rules:

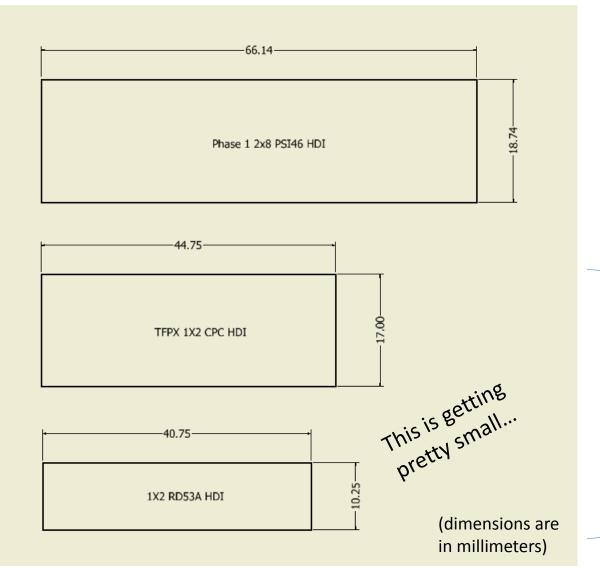

W, *S* \geq 76.4 μm (3 mils)

- Conservative rules: $W, S \ge 89 \ \mu m$ (3.5 mils)
- Vendors with much more aggressive rules do exist.

Differential Pair Designs

- Controlled impedance line width/spacing
 - Polyimide dielectric (ε_r =3.5), 10 µm thick solder mask
 - 8.75 µm conductor thickness
 - 100 Ω edge-coupled stripline
 - Calculated with Cadence/Allegro field solver

100 Ω stripline

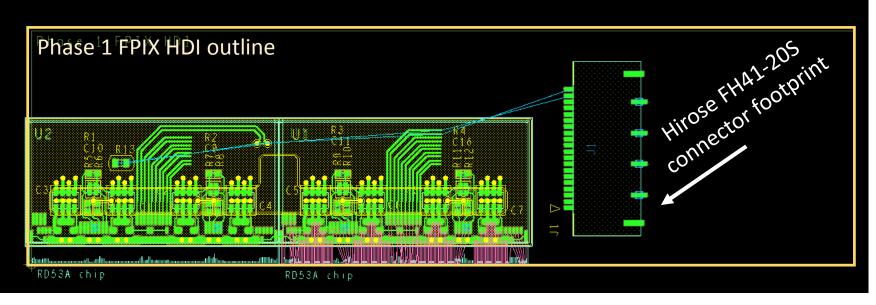

This seems to indicate that a dielectric thickness of between 50 and 75 μm may be optimal for easily achievable design rules.

Differential Pair Designs

- The nominal target of 100 Ω differential impedance may not be critical provided the transmission lines are terminated appropriately
- Serial powering requires AC coupling of all differential pairs and their local ground reference
 - Must we place these capacitors on the HDI?
 - This would minimize material at small R
- Width of all differential pairs: $W = n \times (2w + s) + (n - 1) \times p$ • n = 9 (8 high speed links + 1 clk/cmd) • $w = 100 \ \mu m, s = 190 \ \mu m$ • $p = 500 \ \mu m$

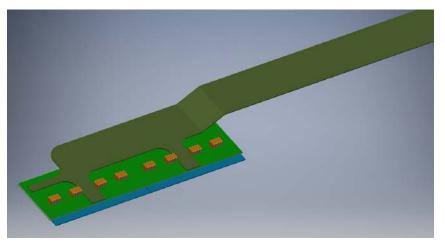
At least for the 1x2 HDI's, the circuit could extend past the edge of the module opposite the wire bonds.

Nominal sizes:


 probably close but might change slightly.

- To relax physical size constraints for the RD53A 1x2 HDI, the circuit could extend beyond the edge of the sensor opposite the ROC wire bonds.
- An RD53A HDI and a CPC HDI could have the same physical size even though the ROC's are different sizes.
- This would provide room for a ZIF connector.
 - The Phase 1 SMK EF-5D series connector is nice
 - Possible alternative: Hirose FH41-20S
- Alternatively, do away with the ZIF connector on the HDI and wire bond directly to a pigtail flex cable

Confronting design issues with 1x2 RD53A type HDI



Observations:

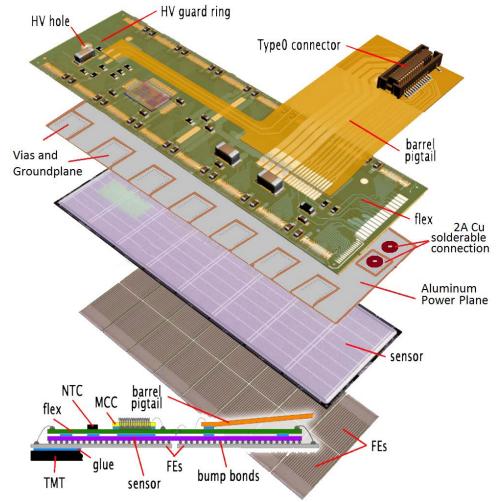
- Likely can be routed using mostly >100 μm line widths/spacing
- Probably won't be able to implement development interfaces
 - Drop JTAG, alternate command input, MUX output
- Connector size may be an issue
- Need to implement some kind of mechanical mounting elements
- May benefit from discrete components in array packages

Current design considerations:

Conceptual design of a pigtail signal/bias voltage flex cable

Still need to provide (lots) of DC current...

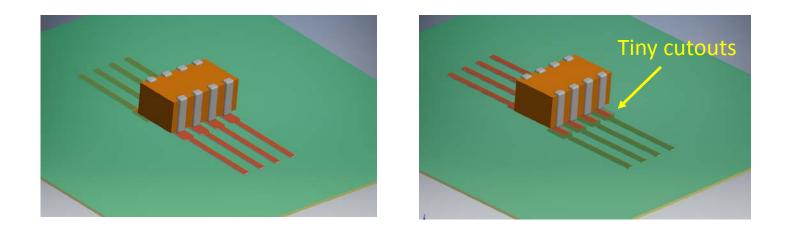
- Capacitor arrays can save space:
 - 4 capacitors in a 2.1 x 1.3 mm package
 - Reduces number of discrete components to assemble
 - But maximum value is 0.1 μF
- Higher values (eg, up to 10 μF) in larger packages can be placed further from bond pads.
- Need to qualify these components for radiation.



Aluminum circuits?

- We contacted a company (Omni) that produces aluminum flex circuits.
 - They use copper cladding as the mask during etching
 - Copper also adheres well to polyimide

Constraints:

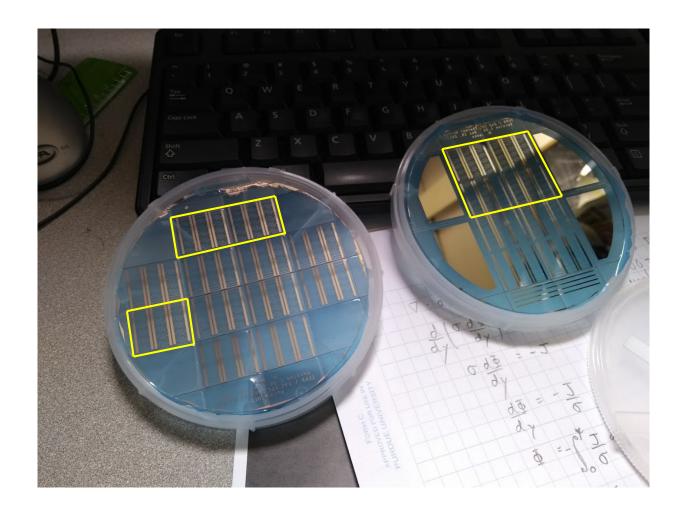

- Vias in aluminum are challenging
- Un-etched copper contributes to radiation length (5 μm)
- Need a good model for current flow in power and ground planes.
 - Installing Allegro tools for DC power modeling
 - How thin can copper power planes be made?
 - Is Aluminum really worth it?

Omni circuits proposed this design based on the Phase 1 module.

- Vias in aluminum are apparently not an option.
- Possible solution for filtering power planes:

Laser ablation apparently costs \$65k per cubic inch

- Volume of polyimide removed here is 3×10^{-8} in³
- This appears to be cost effective

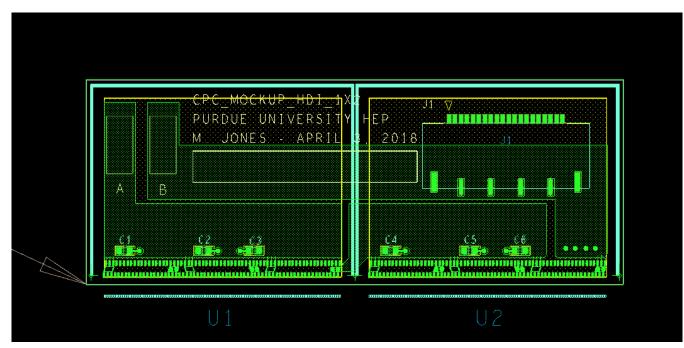


Fabricated single-chip, 1x2 and 2x2 mock-ups of full-sized CPC chip modules.

Each mock-up chip can dissipate up to about 8 watts.

Wire bond pads vaguely approximate RD53A design.

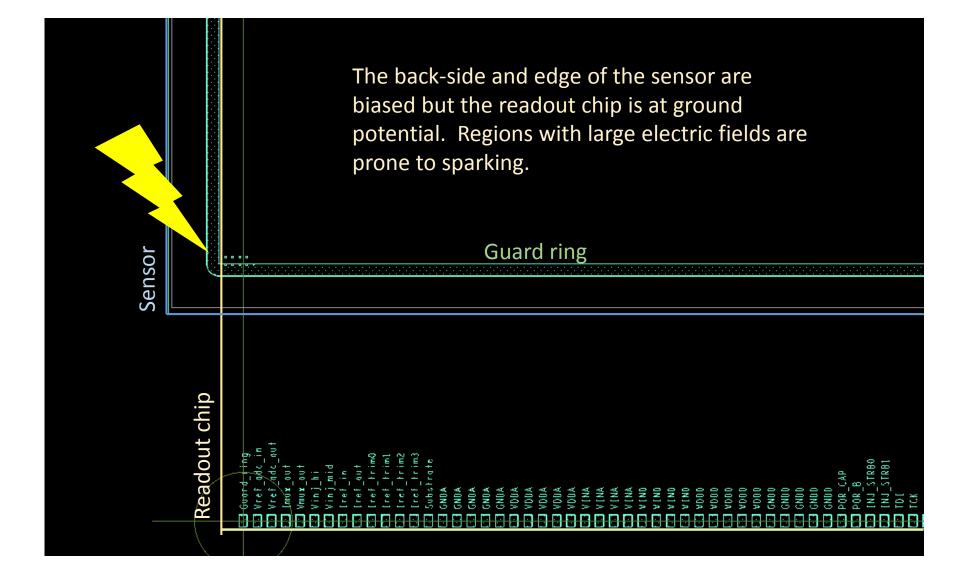
Needed for thermal/mechanical interface studies.



Please let me know if you would like any. We can make more...

"HDI" for thermal mock-ups

- Originally intended to begin the process of qualifying candidate HDI vendors.
- Best option appears to be to fabricate using a low-cost conventional 2-layer circuit
- Provides an opportunity to irradiate candidate components and materials used for assembly.

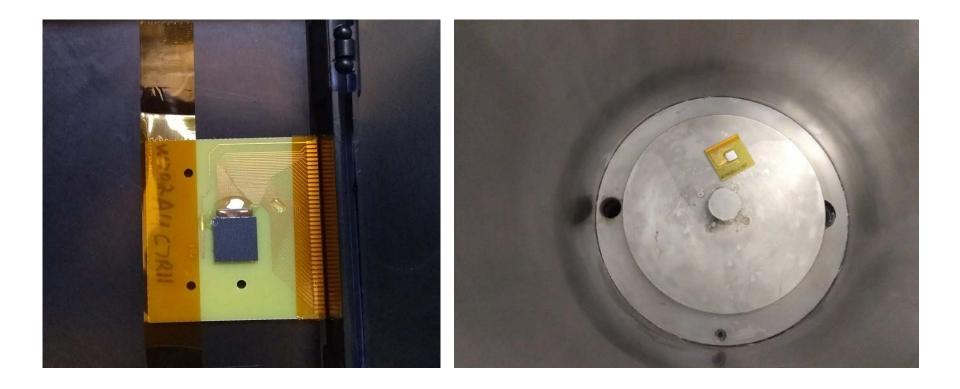


"HDI" for thermal mock-ups

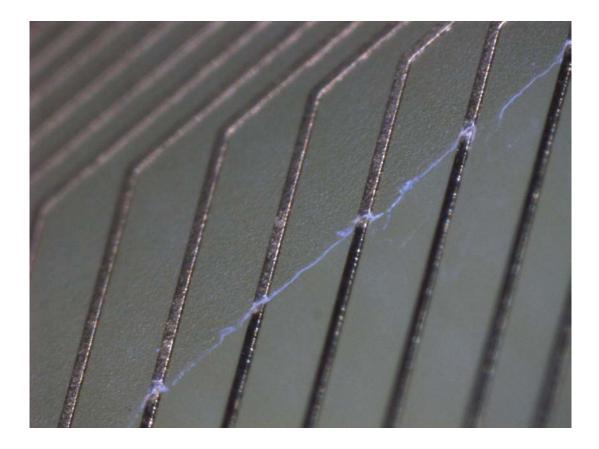
Planned changes to the first design concept:

- Most of the advantages of high density flex circuits are not relevant for thermal testing
- Therefore, submit a simple 2-layer conventional copper circuit.
- Still useful to provide placement for components that may be selected for the RD53A/CPC HDI
 - Capacitor arrays
 - Tantalum capacitors
 - Resistors
 - Solders
 - Epoxies
 - Encapsulants
- Test before and after irradiation campaign
- Do we need to provide DC power during irradiation?

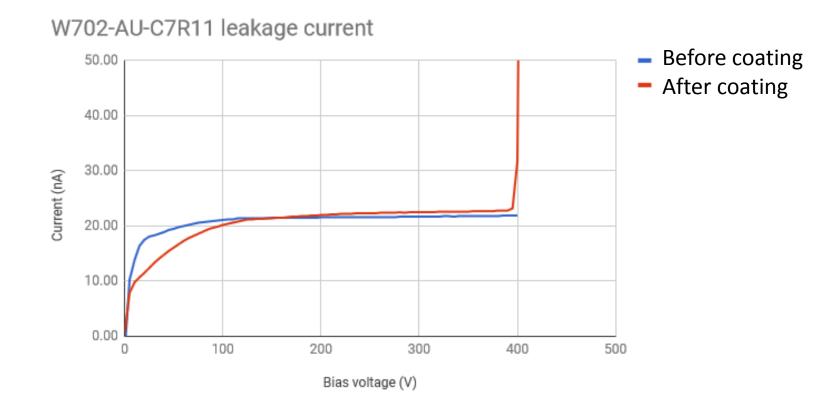
Spark Mitigation Strategies



Parylene-N Coating Process

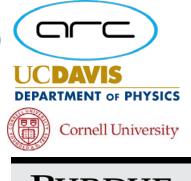

Initial experience based on only one device:

- Did not use an adhesion promotor
- Masked electrical connections with Kapton tape
- Deposited 4 um of Parylene-N


Clean removal of Kapton tape:

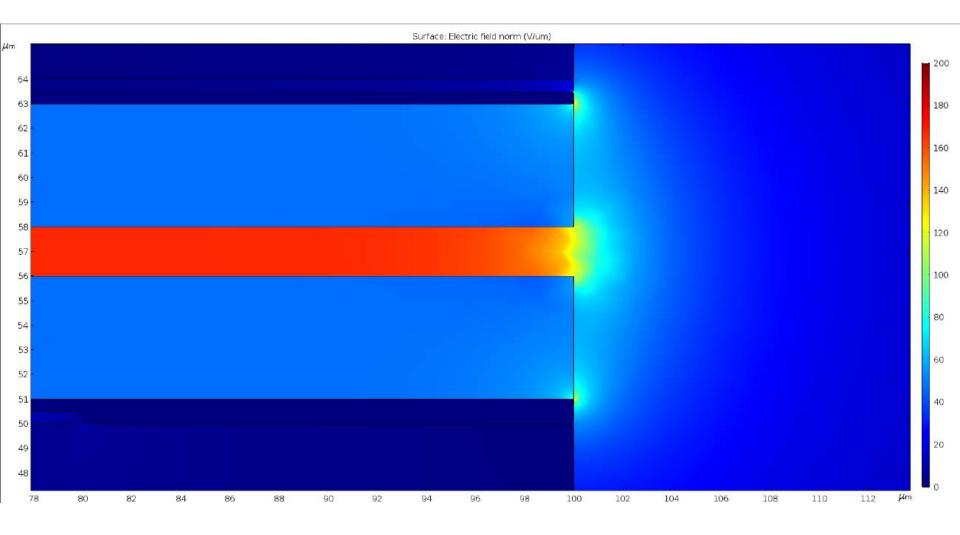
Preventing Parylene from coating the internal parts of, for example, a ZIF connector will be more difficult.

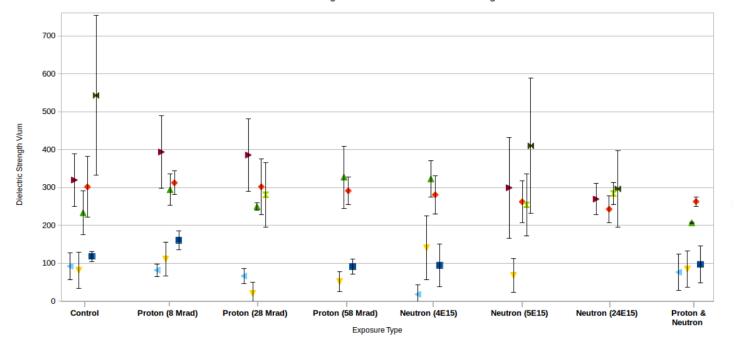
- Leakage current essentially unchanged after coating
- Breakdown occurring very close to 400 volts



- Parylene deposition process is straight forward
- Masking macroscopic electrical connections with Kapton tape seems to work well
- Breakdown observed at around 350-400 volts.
- Two possibilities:
 - 1. Breakdown voltage before coating was significantly higher than 400 volts and was reduced to about 400 volts after coating.
 - 2. Breakdown voltage before coating was about 400 volts and was changed slightly after coating.
- Not entirely sure how to prove that the breakdown is in the sensor and not in the gap between the sensor and ROC.

Investigation of other dielectrics


- Research partnership:
 - Advanced Research Corporation (Greg Wagner)
 - University of California Davis (Mani Trepathi)
 - Cornell University (Julia Thom)
 - Purdue University (Matthew Jones)
- Research goals:


- Investigate a number of dielectrics that are likely to be rad-hard
- Model the electric field in the regions where breakdown is likely
- Build test structures that accurately represent bumpbonded module geometries
- Irradiation campaigns
- Focus industrial scale application with an eye towards commercialization

Modeling electric fields using COMSOL

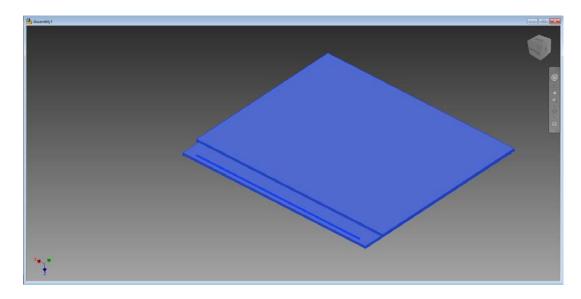

Average 1st Breakdown Dielectric Strength

Figure 10. Average 1st breakdown dielectric strength $[V/\mu m]$ sorted by exposure type for each material. The error bars represent the standard deviation of the dielectric strength

Next steps:

- Fabricate electrical-mechanical analogs
- Geometry expected for full-scale CPC chip
- 50 μm x 50 μm bump array, representative wire bond pads
- Perform flip-chip assembly, test breakdown properties for various dielectrics before and after irradiation

- Working on mechanical/thermal/electrical concepts for TFPX HDI design
- Thermal mock-ups fabricated for studying heat transfer
- HDI design allows for radiation qualification of components and materials
- Two approaches to spark mitigation
 - Short term strategy with Parylene-N
 - Longer term solutions suitable for module production under investigation in collaboration with industry