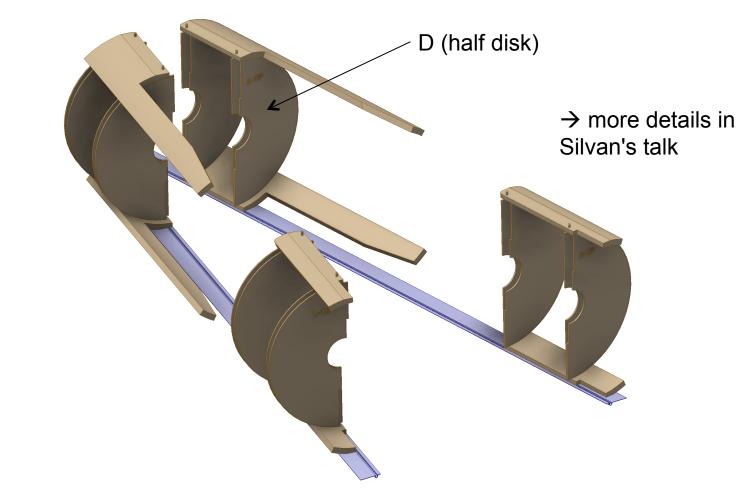


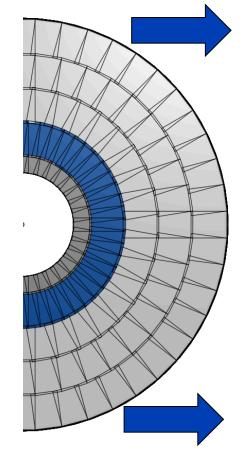
PAUL SCHERRER INSTITUT

Physik-Institut


EPIX portcard

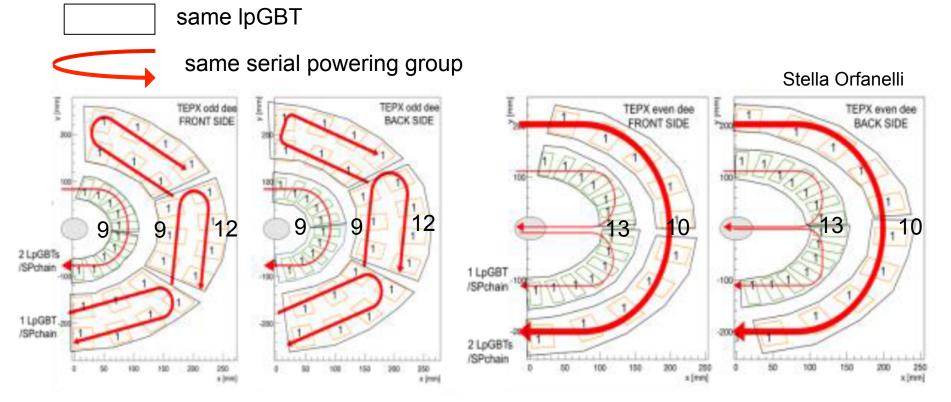
Lea Caminada

EPIX/FPIX Workshop 14 June 2018

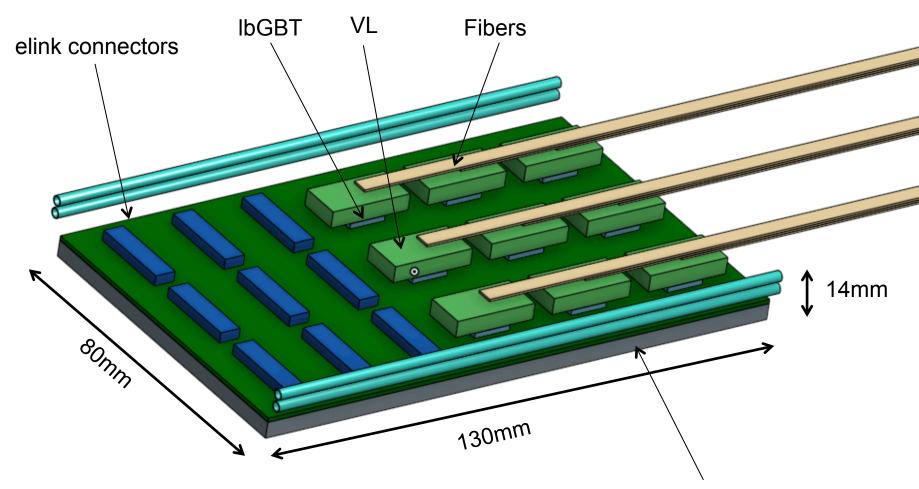

EPIX Services

- Geometry of EPIX services different than FPIX services
 - phi segments vs half cylinder
- EPIX consists of 8 mechanical units with 2 Ds (half-disks) each
 - aim for common design of portcard for all Ds

EPIX Services per D


- Based on module arrangement presented in Wolfram's talk
- Compared to TDR design
 - Fewer numbers of modules (and therefore elinks)
 - Same number of IpGBT (but less modules per IpGBT)
 - Larger bandwith for innermost ring (1 elink for 1 chip instead of 2)
- Services for each D in two slots (top and bottom)
 - 2 portcards per disk

	Ring 1	Ring 2	Ring 3	Ring 4	Ring 5	Total
#Modules	18	26	18	20	24	106
#ROCs	18	52	72	80	96	318
#elinks	18	26	18	20	24	106
#lpGBT	4	4	6*	4	*with Ring 3	18
#modules/ lpGBT	4.5	6.5	7	5		5.9


EPIX Services per D

Connection scheme follows TDR layout

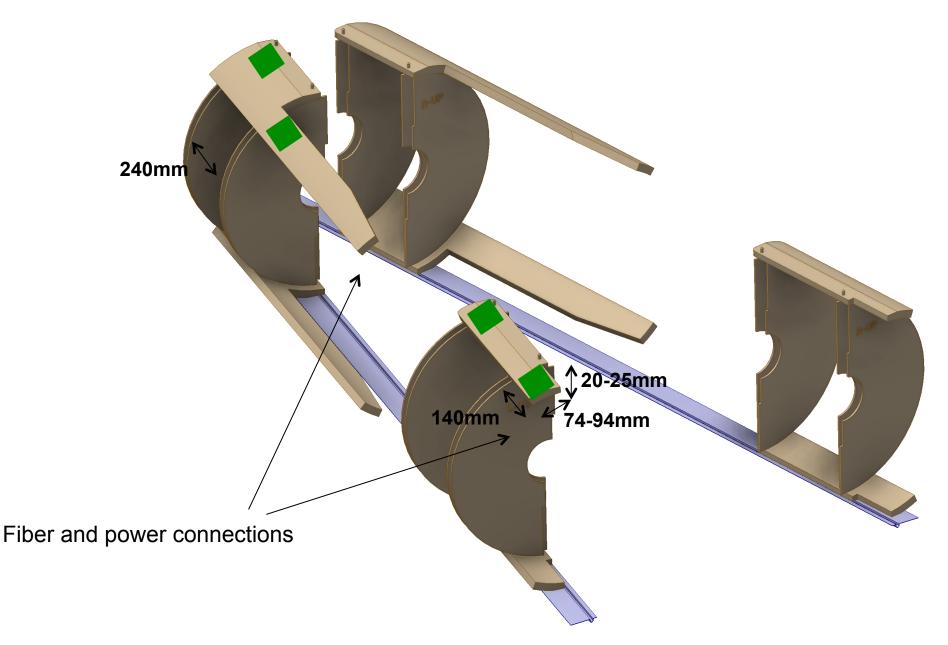
- 2 portcards per D:
 - elink: 1 up/1 down link per module \rightarrow 106 differential pairs per portcard
 - elink length up to 30-40cm
 - 9 IpGBT/VL per portcard
 - 1 elink connector per IpGBT \rightarrow connecting to 4-7 modules

How the portcard could look like

Next steps

Power lines

- Placement of module/lpGBT connectors: outside/inside?
- Placement of power lines, connectors?
- Elink design?


Powering of portcard

- TDR scheme based on 2 DCDC converters $(11V \rightarrow 2.55V \rightarrow 1.25V)$
- Is direct powering an option?
- Assuming one cable per portcard (powering 9 lpGBT/VL)

		Length [m]	xsec [mm²]	I[A]	Vin[V]	Vout[V]	Power loss [W]
IpGBT	PS-PP1	85	3.5	5.4	8	3.6	24
	PP1-PP0	6	0.7	5.4	3.6	2.0	8
VL	PS-PP1	85	1.4	1.1	6	3.8	2.4
	PP1-PP0	6	0.7	1.1	3.8	3.5	0.3

- Power loss for one EPIX quadrant: 280 W (compared to 740W for detector power)
- Cable cross section for one EPIX quadrant:
 - 80mm² (compared to 670mm²) for PS-PP1
 - 23mm² (compared to 280mm²) for PP1-PP0
- Is there an option that fits within service constraints?

Where the portcard could be placed

Backup

1x1

Advantages

- Smaller number of modules/ROCs per disk
- Reduced number of elinks per disk
- Increased elink bandwidth for innermost ring
- (Fewer number of modules per IpGBT)
- Increased minimal distance between modules on same disk → space for wirebonding

At the cost of

 Additional module type (Note however that 1x1 modules are already in the planning for sensor/module R&D)

|--|

EPIX CHIP MODULE RO rate RO Elink #chips Modul RO 1.28 Elink Occupancy per 1.28 in Mbps Occup е Gbps Links module per for Gbps ancy modul Rate per module 750KHz Links e Mbps per per chip chip 0.5 R1 lowCol 348 54% 1 881 1 69% R1_highCol 83% 533 0.5 1 0.5 32% 1 475 1 37% R2 lowCol 206 R2_highCol 269 0.5 42% 1 167 0.25 52% 2 688 R3 lowCol 1 54% R3 highCol 177 0.25 55% 2 1 R4 lowCol 121 0.25 38% 2 518 40% R4 highCol 138 0.25 43% 2 R5 lowCol 102 0.25 32% 2 442 1 119 0.25 37% R5_highCol 2

from IT service document