

MD3263
 LR beam-beam compensation using DC wires

S. Fartoukh, N. Karastatis, Y. Papaphilippou, A. Poyet, A. Rossi, G. Sterbini on behalf of the Wire MD team
rMPP, 05 June 2018, https://indico.cern.ch/event/734213/
https://asm.cern.ch/md/requests/LHC/3263

MD3263

- Assigned time:
- MD\#1 [10 h]: 4 wires compensation at $\beta^{*}=30$ cm and $\theta_{\mathrm{c}} / 2=150 \mu \mathrm{rad}$ (jaws at $5.5 \sigma_{\text {coll }}$)
- MD Merit: the goal of the MD is to compensate or mitigate the BBLR effect by using DC wires.

Hardware overview of wire prototypes

Filling scheme, 25ns_158b_3b_2_0_0_48bpi_MD3263_MD\#1

Minimum settings of the wire

The proposal is to have the wire collimators jaws at $5.5 \sigma_{\text {coll }}$ (as in 2017 MD\#4) with TCSP at $5 \sigma_{\text {coll }}$. $5^{\text {th }}$-axis alignment is very important (see $348^{\text {th }} \mathrm{LMC}$).

The beam wire distance will be (ideal 5 -th axis alignment).

Wire	Plane	Wire-beam distance [mm]
R1	V	+7.42
L1	V	-7.41
R5	H	+8.24
L5	H	-7.15

Local correction in Q4/5. Motivation and implication.

RIGHT WIRE IR5

An example of β-beating induced by a wire (R5, 350 A at $5.5 \sigma_{\text {coll }}$)
β-beating corrected using the Q4 and Q5 (350 A at $5.5 \sigma_{\text {coll }}$). Provided that PC interlock settings on these 8 quads is relaxed during the MD.

Quadrupolar feedforward

We assumed $\mathrm{I}=350 \mathrm{~A}$ and jaw at $5.5 \sigma_{\text {coll }}$ to compute the max variation.

Wire	Knob	Trim for $\mathbf{3 5 0} \mathbf{A , 5 . 5} \mathbf{s}_{\text {coll }}\left[\mathbf{1} \mathbf{e - 5} \mathbf{~ m}^{-\mathbf{2}}\right]$	$\boldsymbol{\Delta}[\%]$
R1	kq4.r1b2	-9.11	-3.98
R1	kq5.r1b2	10.76	-8.17
L1	kq4.11b2	-1.09	0.48
L1	kq5.11b2	-0.52	-0.54
R5	kq4.r5b2	6.83	2.98
R5	kq5.r5b2	-7.94	6.03
L5	kq4.15b2	8.19	-3.58
L5	kq5.15b2	-9.25	-9.45

We propose to apply a 1.2 factor and to have symmetric tolerance windows (the wire PCs are bipolar).

Dipolar feedforward

We assumed $I=350$ A and jaw at $5.5 \sigma_{\text {coll }}$ to compute the max variation.

Wire	Corrector	Trim for $\mathbf{3 5 0} \mathbf{A , 5 . 5} \mathbf{s}_{\text {coll }}$ [$\mu \mathrm{rad}$]
R1	MCBYV.4R1.B2	-0.60
L1	MCBYV.A4L1.B2	0.38
R5	MCBYH.A4R5.B2	-0.41
L5	MCBYH.4L5.B2	0.58

For this relative small trims, we expect to be in the shadow of the crossing and lumiscan trim range.

Feedforward orchestration

Thanks to M. Solfaroli and G.-H. Hemelsoet

Xing angle reduction with the wires ON

In this case the beam-wire distance should not change \Rightarrow feedforward not active.

During the xing angle reduction (150 $\Rightarrow 130 \mu \mathrm{rad})$ the wire collimator half gap is constant at $5.5 \sigma_{\text {coll }}$.

The collimators within the xing bumps TCL.4L5.B2

- TCL.4R5.B1
- TCTPH.4L5.B1
- TCTPH.4R5.B2
- TCTPV.4L1.B1
- TCTPV.4R1.B2
- TCLVW.A5L1.B
will be moved to follow the beams:

Thanks to M. Hostettler

Phasing between IP1 and IP5 (I)

The wires are installed on B2. B2 is more resilient than B1 concerning BBLR \Rightarrow populate B 2 tails with H/V blow-up to see and compensate losses.

In the second part of the MD we would like to test the effect of the IP1 \Rightarrow IP5 phase advance on losses.

The phase advance between IP1 \Rightarrow IP5 is 38/41 deg larger for B2 than B1 respectively in the H/V planes.

In the past (thanks to S. Fartoukh and M. Solfaroli) two knobs LHCBEAM2/PHASE15_TRIM_H and LHCBEAM2/PHASE15_TRIM_V were prepared for the ATS optics (tele-index independent) and tested in 2016 w/o BBLR.

```
KQTF.A23B2 := 0.01449247771 * dmux15.b2 + 0.00265943757 * dmuy15.b2;
KQTF.A34B2 := 0.01449247771 * dmux15.b2 + 0.00265943757 * dmuy15.b2;
KQTF.A78B2 :=-0.01449247771 * dmux15.b2 - 0.00265943757 * dmuy15.b2;
KQTF.A67B2 := -0.01449247771 * dmux15.b2 - 0.00265943757 * dmuy15.b2;
KQTD.A23B2 := -0.00269988488 * dmux15.b2 - 0.01446286429 * dmuy15.b2;
KQTD.A34B2 := -0.00269988488 * dmux15.b2 - 0.01446286429 * dmuy15.b2;
KQTD.A67B2 := 0.00269988488*dmux15.b2 + 0.01446286429 * dmuy15.b2;
KQTD.A78B2 := 0.00269988488 * dmux15.b2 + 0.01446286429 * dmuy15.b2;
```

S. Fartoukh

Phasing between IP1 and IP5 (II)

PROPOSAL: use the knob to vary in a range of $-10<\Delta \mu_{\mathrm{x}}<10$ deg (or larger?) and $-15<\Delta \mu_{y}<15$ deg for B 2 ($\pm 4.2 \mathrm{e}-2$ and $\pm 2.8 \mathrm{e}-2$ in terms of $\mathrm{Q}_{\mathrm{x}, \mathrm{Y}}$).
For the NOMINAL case

- $\Delta \mu_{x}($ MKD. $O \Rightarrow$ TCTPH.4R1.B2) $=177.4 \mathrm{deg}$
- $\Delta \mu_{x}$ (MKD.O \Rightarrow TCTPH.4R5.B2) $=155.1 \mathrm{deg}$

For the proposed case

- $\Delta \mu_{\mathrm{x}}$ (MKD.O \Rightarrow TCTPH.4R1.B2): varied by $\Delta \mu_{\mathrm{x}}$
- $\Delta \mu_{x}$ (MKD.O \Rightarrow TCTPH.4R5.B2): not affected.

Thank you.

BACKUP SLIDES

MD3263: requirements MD\#1

Bunch intensity (1e11 ppb): Nominal, BCMS trains and pilots Number of bunches: B1: 1 PILOT + 1 NOMINAL+1x12b + 3x48b; B2: $\leq 3 e 11 \mathrm{p}$ in total (3 LHCINDIV + 1 PILOT)
Transverse emittance ($\mu \mathrm{m}$): ~2.2 urad (B2 blown-up, see later)
Bunch length ($4 \sigma, n s$): 1 ns
Optics: Flattop ATS optics 30 cm from 160 to 130 urad
Orbit change: Yes (crossing angle reduction).
Collimation change: Yes (in B2).
Feedback change: Yes. B2 bunches need to be blown-up.
What else should be changed?

- Mask wire +/-10 A interlocks.
- Mask the "PC interlock" (needed to trim Q4/Q5 of B2).
- Approach the jaws of TCTPV.4R1.B2, TCL.4L5.B2, TCTPH.4R5.B2, TCLVW.A5L1.B2 up to $5.5 \sigma_{\text {coll }}$ (and TCSP/TCP set at $5 \sigma_{\text {coll }}$).
- During collision, octupoles of B1 and B2 at 550 and 0 A.

MD3263: main steps in MD\#1

1. Put the beam in collision at $\beta *=30 \mathrm{~cm}$ and adjust the octupoles. Go from 160 to 150 urad in IR1 and IR5.
2. Approach all wire-collimators to $5.5 \sigma_{\text {coll }}$ (move the TCSP to $\left.5 \sigma_{\text {coll }}\right)$.
3. Alignment of the $5^{\text {th }}$ axis of all wires

- ISSUE: limited $5^{\text {th }}$-axis range TCTPV.4R1.B2 $=>$ precise alignment not possible.

4. Transverse emittance BU for B2 (separate the beams+increase the octupoles in B2)
5. Compensation ON in IR1.

- TODO: feedforward for dipole/quadrupole correction.

6. Compensation OFF in IR1.
7. Compensation ON in IR5.
8. Compensation ON with IR1 and IR5.
9. Reduce the crossing angle in step from 150 to 130 urad with the compensation ON

- TCLVW.A5L1.B2 included in the MD orchestration.

MD1 and MD2

Constraint of present prototype, optics and setup: we dimension the experiment to correct only two RDTs with the 2 wires at the same jaw position in $\sigma_{\text {coll }}$.

The beam-wire distance "problem"

Optimal beam-wire distance= 5.7 mm

- The optimal beam-wire, d_{w}, is extremely challenging with the present prototype: collimator at 3-4 $\sigma_{\text {coll }}$.
- In 2017 we tested the $5.5 \sigma_{\text {coll }}$ distance in IR5 (safe beam):results showed that we can have compensation effect (at least for ROUND optics) by addressing only two RDTs.
- In 2018 to explore the $5 \sigma_{\text {coll }}$

The present roadmap

MD1 - Compensation of IR5 and IR1 at $5.5 \sigma_{\text {coll }}$ at 30 cm and 150 urad.

- We would need to change the B2 tune to make it more sensitive to BBLR (or play other tricks) and EoF MD power all 8 wires.
- OPTION 1 (preferred): repeat with a small train in B2 (>12 bunches) and possibly with tighter collimator settings than the EoF.
- OPTION 2: test the compensation by using different Xing angles in IP1/5 (170/120 urad) (loss of LR compensation of B2, B6,...).

MD3, EoF and MD4 : opposite wire

One could consider to put the two wires in series.
In this way (only for the "even" multipoles) one double the available I_{w} and could see an effect also at nominal position \Rightarrow end of fill MDs.

