

MD3263 LR beam-beam compensation using DC wires

S. Fartoukh, N. Karastatis, Y. Papaphilippou, A. Poyet, A. Rossi, <u>G. Sterbini</u> on behalf of the Wire MD team

rMPP, 05 June 2018, https://indico.cern.ch/event/734213/

https://asm.cern.ch/md/requests/LHC/3263

MD3263

Assigned time:

- MD#1 [10 h]: 4 wires compensation at $\beta^*=30$ cm and $\theta_c/2=150 \mu rad$ (jaws at 5.5 σ_{coll})
- **MD Merit:** the goal of the MD is to compensate or mitigate the BBLR effect by using DC wires.

Week 24, 2	018					Schedule status: DRAFT La	st modification: Friday, 1 June 2018 4:25 PM
LHC							
	Mon 11/6	Tue 12/6	Wed 13/6	Thu 14/6	Fri 15/6	Sat 16/6	Sun 17/6
12am 1am			7:00 - 3:00 MD3349 Start collisions at 1m Beta*	10:00 - MD3297 Heat load measurements with orbit bumps in		11:00 - 7:00 MD3164 Optimal injection voltage	12:00 - Recovery
2am			300 - 500	2:00 - Ramp down 3:00 - 11:00			2:00 - 10:00 MD3290 Instability threshold measurements in the
3am 4am			Ramp down	MD3288 Instability latency with controlled noise			presence of a controlled external excitation
5am			5.00 - 2:00			-	
6am			MD3300 Heat load measurements with different				
7am		7:00 - 5:00	bunch intensity			7:00 - Recovery	
8am		MD2148 Flat optics				8:00 - 2:00	
9am					9:00 - 11:00	MD1653 Characterisation of BLM response at	
10am					Ramp down	collimators	10:00 - 12:00
11am				11:00 - 1:00	11:00 - 9:00		Ramp down
12pm				Ramp down	MD3270 Round ATS optics with large tele-index		12:00 - 8:00 MD2148 Flat optics
1pm				1:00 - 9:00 MD3327 Crystal collimation tests with proton			MD2148 Flat optics
2pm			2:00 - 10:00 MD3296 Impact of spool-piece correctors on heat	beams		2:00 - 4:00 Ramp down	
3pm			loads				
4pm						4:00 - 12:00 MD3311 Amplitude detuning at end-of-squeeze	
5pm		5:00 - 7:00 Recovery				hossee with the detailing at end-or-squeeze	
6pm						-	
7pm		7:00 - 3:00 MD3349 Start collisions at 1m Beta*				-	
8pm							8:00 - 10:00 Ramp down
9pm			10:00 - 2:00	9:00 - 11:00 Recovery	9:00 - 11:00 Ramp down		10:00 - 12:00
10pm			MD3297 Heat load measurements with orbit bumps		11:00 - MD3164 Optimal injection voltage		MD3310 Complex tune shift as a function of the
11pm			in the area		11:00 - MD 5164 Optimat Injection voltage		terre de la claste burger estas a tanécian aran

Hardware overview of wire prototypes

The **TCLVW.A5L1.B2** is NOT an operational collimator.

05/06/2018

CFRN

Filling scheme, 25ns_158b_3b_2_0_0_48bpi_MD3263_MD#1

05/06/2018

Minimum settings of the wire

The proposal is to have the wire collimators jaws at **5.5** σ_{coll} (as in 2017 MD#4) with TCSP at 5 σ_{coll} . 5th-axis alignment is very important (see <u>348th LMC</u>).

The beam wire distance will be (ideal 5-th axis alignment).

Wire Plane		Wire-beam distance [mm]					
R1	V	+7.42					
L1	V	-7.41					
R5	Н	+8.24					
L5	Н	-7.15					

Local correction in Q4/5. Motivation and implication.

05/06/2018

Quadrupolar feedforward

We assumed I=350 A and jaw at 5.5 σ_{coll} to compute the max variation.

Wire	Knob	Trim for 350 A, 5.5 s _{coll} [1e-5 m ⁻²]	Δ [%]
R1	kq4.r1b2	-9.11	-3.98
R1	kq5.r1b2	10.76	-8.17
L1	kq4.l1b2	-1.09	0.48
L1	kq5.l1b2	-0.52	-0.54
R5	kq4.r5b2	6.83	2.98
R5	kq5.r5b2	-7.94	6.03
L5	kq4.l5b2	8.19	-3.58
L5	kq5.l5b2	-9.25	-9.45

We propose to apply a 1.2 factor and to have symmetric tolerance windows (the wire PCs are bipolar).

Dipolar feedforward

We assumed I=350 A and jaw at 5.5 σ_{coll} to compute the max variation.

Wire	Corrector	Trim for 350 A, 5.5 s _{coll} [μrad]
R1	MCBYV.4R1.B2	-0.60
L1	MCBYV.A4L1.B2	0.38
R5	MCBYH.A4R5.B2	-0.41
L5	MCBYH.4L5.B2	0.58

For this relative small trims, we expect to be in the shadow of the crossing and lumiscan trim range.

Feedforward orchestration

The trim of the wires will be done via GUI (approach already tested in 2017 MD#4).

The trim of the wires will be synchronized with the dipolar and quadrupolar feedforward.

	🔲 Wire controller app _ 🗆 🗄	×
	<pre><none> *</none></pre>	
	▼ IP5L WIRE	
	Final current (A) 0 0.0	
one	Position (mm) Must be positive 0.0	
ted	▼ IP5R WIRE	
	Final current (A) 0 0.0	
nd	Position (mm) Must be negative 0.0	
	Trim Time (sec) 5	
	Q scaling Factor 1.2 -0.6 0 0.6 1.2	
	Q TRIM SELECTOR: Quads Q knobs	
	Send	
Thank	s to M. Solfaroli and GH. Hemelsoet	

05/06/2018

Guido STERBINI

Xing angle reduction with the wires ON

In this case the beam-wire distance should not change \Rightarrow feedforward not active.

During the xing angle reduction (150 \Rightarrow 130 µrad) the wire collimator half gap is constant at 5.5 σ_{coll} .

The collimators within the xing bumps TCL.4L5.B2

- TCL.4R5.B1
- TCTPH.4L5.B1
- TCTPH.4R5.B2
- TCTPV.4L1.B1
- TCTPV.4R1.B2
- TCLVW.A5L1.B will be moved to follow the beams:

<u> </u>	LHC Lumi Commi	issioning/MD To	olkit V 0.0.18	3			Ŷ	- 0	
🔟 ▼ RBA: Ihcop 💿 LHC 🗨	🕶 🕒 BP 💌 🤣								
Cont. Crossing Levelling Ref K	nob EquipState Knob Trim Lim	nits 🕴 LSA Functi	on Trim Test		im Orchestratio		cer Agent Test		
F	Beam Processes		N		- No Particle tra	nsfer			
filter:		(?)	Parameter CHROMATIC	Groups	Type Groups		Parameters		
CINTERLOCK_REF ID MIL 0.51CV		- 4 D T 1	CHROMATIC		KNOB	Filter:			
PC_INTERLOCK_REF-RAMP-6.5TeV- PC_INTERLOCK_REF-RAMP-SQUEEZ			CHROMATIC		K				
PC_INTERLOCK_REF-SQUEEZE-6.5T			COLLIMATO		K_SMOOTH I IREF				
PC_INTERLOCK_REF-SQUEEZE-6.5T			COUPLING	1.5					
PC_INTERLOCK_REF-SQUEEZE-TEL				IP_ANGLE		LHCBEAM/IP2-XING-V-MORAD			
C_INTERLOCK_REF-SQUEEZE-TELE			IP_CROSSING	c		LHCBEAM/IP5-XING-V-MURAD			
PC_INTERLOCK_REF-TELE-ATS_kno		=		'			IP8-XING-H-M		
PHYSICS-6.5TeV-30cm-120s-2018			IP_OFFSET	0.1		LITEBLAM	n o-And-n-M	IONAD	
PHYSICS-6.5TeV-30cm-120s-2018			IP_SEPARATI		-				
PHYSICS-6.5TeV-40cm-120s-2017			IP_SPECTRON						
PHYSICS-6.5TeV-40cm-120s-2017 PHYSICS-6.5TeV-40cm-120s-2017			LANDAU DA	:					
PHYSICS-6.5TeV-40cm-120s-2017			LHC SIS-REF						
PHYSICS-6.5TeV-40cm-120s-2017			LHCINJKICK						
PHYSICS-6.5TeV-40cm-120s-2017			LUMI-ANGLE	-					
PHYSICS-TELE-6.5TeV-ATS-2017_	35cm_V1		LUMI-SCAN						
PHYSICS-TELE-6.5TeV-ATS-2017_			MATCHING C						
PHYSICS-TELE-6.5TeV-ATS-2017_		.evelling	MOMENTUM						
QCHANGE-6.5TeV-2017_V1_BLEVE			NONE		-		Select All		
QCHANGE-6.5TeV-2017_V1_BLEVE DCHANGE-6.5TeV-2017_V1_RLEVE		-							
			Select		Select	Hierarc	hy Show	∧ Fiel	
MD	▼			neter by i				(?	
Parameter	Actual Setting		rim [delta]	[Collimators to		- 194/C		
HCBEAM/IP1-XING-V-MURAD	160.0	-10			COLLIMATORS	Collimato			
HCBEAM/IP5-XING-H-MURAD	160.0	-10			COLLIMATORS			-	
				COLLIMATORS_XRP_TOTEM_LOWBETA COLLIMATORS_XRP_TOTEM_LOWBETA_B					
			COLLIMATORS_XRP_TOT COLLIMATORS_XRP_TOT COLLIMATORS_XRP_TOT COLLIMATOR BPM						
						-	_LOWBETA_E		
			COLLIMATOR_LOSSMAP						
				Select All					
					Collimators				
			TCL6L1.B2			4			
			TCL6L5.B2						
			TCL.6R1.B1			-			
					TCL.6R5.B1				
					TCLVW.A5L1.B2	2			
					TCTPH.4L1.B1			-	
					TCTPH 41 2 R1				
				Select	All				
						Deselec	t all		
Orchestrated Trim Min. Trim Period [s]: 30									

Phasing between IP1 and IP5 (I)

The wires are installed on B2. B2 is more resilient than B1 concerning BBLR \Rightarrow populate B2 tails with H/V blow-up to see and compensate losses.

In the second part of the MD we would like to test the effect of the IP1 \Rightarrow IP5 phase advance on losses.

The phase advance between IP1 \Rightarrow IP5 is 38/41 deg larger for B2 than B1 respectively in the H/V planes.

In the past (thanks to S. Fartoukh and M. Solfaroli) two knobs LHCBEAM2/PHASE15_TRIM_H and LHCBEAM2/PHASE15_TRIM_V were prepared for the ATS optics (tele-index independent) and tested in 2016 w/o BBLR.

> KQTF.A23B2 := 0.01449247771 * dmux15.b2 + 0.00265943757 * dmuy15.b2; KQTF.A34B2 := 0.01449247771 * dmux15.b2 + 0.00265943757 * dmuy15.b2; KQTF.A78B2 := -0.01449247771 * dmux15.b2 - 0.00265943757 * dmuy15.b2; KQTF.A67B2 := -0.01449247771 * dmux15.b2 - 0.00265943757 * dmuy15.b2;

KQTD.A**23**B2 := -0.00269988488 * dmux15.b2 - 0.01446286429 * dmuy15.b2; KQTD.A**34**B2 := -0.00269988488 * dmux15.b2 - 0.01446286429 * dmuy15.b2; KQTD.A**67**B2 := 0.00269988488 * dmux15.b2 + 0.01446286429 * dmuy15.b2; KQTD.A**78**B2 := 0.00269988488 * dmux15.b2 + 0.01446286429 * dmuy15.b2;

Phasing between IP1 and IP5 (II)

PROPOSAL: use the knob to vary in a range of -10< $\Delta\mu_x$ <10 deg (or larger?) and -15< $\Delta\mu_y$ <15 deg for B2 (±4.2e-2 and ±2.8e-2 in terms of Q_{X,Y}). For the NOMINAL case

- Δµ_x(MKD.O⇒TCTPH.4R1.B2)=177.4 deg
- $\Delta \mu_x$ (MKD.O \Rightarrow TCTPH.4R5.B2)=155.1 deg For the proposed case
- $\Delta \mu_x$ (MKD.O \Rightarrow TCTPH.4R1.B2): varied by $\Delta \mu_x$
- $\Delta \mu_x$ (MKD.O \Rightarrow TCTPH.4R5.B2): not affected.

Thank you.

BACKUP SLIDES

MD3263: requirements MD#1

Bunch intensity (1e11 ppb): Nominal, BCMS trains and pilots Number of bunches: B1: 1 PILOT + 1 NOMINAL+1x12b + 3x48b; B2: <3e11 p in total (3 LHCINDIV + 1 PILOT) Transverse emittance (μ m): ~2.2 urad (B2 blown-up, see later) Bunch length (4 σ , ns): 1 ns Optics: Flattop ATS optics 30 cm from 160 to 130 urad Orbit change: Yes (crossing angle reduction). Collimation change: Yes (in B2). Feedback change: Yes. B2 bunches need to be blown-up. What else should be changed?

- Mask wire +/-10 A interlocks.
- Mask the "PC interlock" (needed to trim Q4/Q5 of B2).
- Approach the jaws of TCTPV.4R1.B2, TCL.4L5.B2, TCTPH.4R5.B2, TCLVW.A5L1.B2 up to 5.5 σ_{coll} (and TCSP/TCP set at 5 σ_{coll}).
- During collision, octupoles of B1 and B2 at 550 and 0 A.

MD3263: main steps in MD#1

- 1. Put the beam in collision at $\beta = 30$ cm and adjust the octupoles. Go from 160 to 150 urad in IR1 and IR5.
- 2. Approach all wire-collimators to 5.5 σ_{coll} (move the TCSP to 5 σ_{coll}).
- 3. Alignment of the 5th axis of all wires
 - ISSUE: limited 5th-axis range TCTPV.4R1.B2 => precise alignment not possible.
- 4. Transverse emittance BU for B2 (separate the beams+increase the octupoles in B2)
- 5. Compensation ON in IR1.
 - TODO: feedforward for dipole/quadrupole correction.
- 6. Compensation OFF in IR1.
- 7. Compensation ON in IR5.
- 8. Compensation ON with IR1 and IR5.
- 9. Reduce the crossing angle in step from 150 to 130 urad with the compensation ON
 - TCLVW.A5L1.B2 included in the MD orchestration.

MD1 and MD2

Constraint of present prototype, optics and setup: we dimension the experiment to correct **only two RDTs** with the 2 wires **at the same jaw position in** σ_{coll} .

The beam-wire distance "problem"

Optimal beam-wire distance= 5.7 mm

- The optimal beam-wire, d_w, is extremely challenging with the present prototype: collimator at 3-4 σ_{coll}.
- In 2017 we tested the 5.5 σ_{coll} distance in IR5 (safe beam):results showed that we can have compensation effect (at least for ROUND optics) by addressing only two RDTs.
- In 2018 to explore the 5 σ_{coll} .

The present roadmap

m SAFE

MD3, EoF and MD4 : opposite wire

One **could** consider to put the two wires in series.

In this way (only for the "even" multipoles) one double the available I_w and **could** see an effect also at nominal position \Rightarrow end of fill MDs.

