In this unit we will learn to do some physics with this
system. This unitis about Newtonian mechanics. We will
get up to simple problems of astronomy.

Before we start we need to spend a little time on physical
constants and units. These can be obtained from within
Mathematica. Let’s look at this quickly, but in most cases
we will not use it.

The command Quantity[magnitude, “item”] will give you
some physical constant “item” with magnitude.

n-= Quantity[2, "SpeedOfLight"]

outfe]= 2 C

- myspeed = UnitConvert[Quantity[1/10, "SpeedOfLight"], "Meters/Sec"]

149896 229
outfe}] —————————
5

nzr= UnitConvert[Quantity[1l, "ElectronMass"], "kg"]

ouzl= 9.109384 x 103! kg

You can extract both the magnitude and the units. This is useful when you want
to get the numbers to setup or when you want to write a careful program. It
gets cumbersome for day to day calculations. And so | tend to set up the units
in the beginning of a calculation into simple variables.

1= QuantityMagnitude [myspeed]

149896229
oufe}s ——————————
5
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n-= QuantityUnit[myspeed]

Meters
outfe}= —————
Seconds

Lets calculate the escape velocity from the Earth

First we setup some constants.

myG = QuantityMagnitude]
UnitConvert[Quantity["GravitationalConstant"], "Newtonsxmeter”2/kg”2"]]

ouf-]= 6.674 X 1071

- radiusofearth =
QuantityMagnitude[UnitConvert[Quantity["EarthMeanRadius"], "Meters"]]

ou-]- 6.3710088 x 10°

n-1= massofearth = QuantityMagnitude[UnitConvert[Quantity["EarthMass"], "Kg"]]
our = 5.9721986 x 102

Now we setup some equations.

nj- KineticEnergy = m » vA2 /23
PotentialEnergy = -myG x massofearth » m/r;
totalenergy = KineticEnergy + PotentialEnergy;

If a particle barely escapes from any radius r from the center of the earth, then
it must have total energy zero. What is the velocity ? Notice it is a quadratic
equation and so it will have negative and positive

n-1= Solve[totalenergy == 0, v]

. Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a corresponding
exact system and numericizing the result.

2.823x 107 2.823x 107
outf+J= {{v»fix}, {vaix}}
Vr Vr

Let’s take the positive solution

= answer = %[[2]]

2.823x 107
outf+]= {V - 7}

\/?
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What is the answer at the Earth’s surface in units of meters/sec

n-= answer /. {r » radiusofearth}

outf+]= {V - 1.119 x 16)4}L

what about plotting it as a function of the height above the earth, up to
10000 km.

mn-1= Plot[v /. answer, {r, radiusofearth, radiusofearth + 10 000 » 103},
PlotStyle - Bold, AxesLabel » {"radius (m)", "escape velocity meters/sec"},
LabelStyle -» {Medium, Bold}]

escape velocity meters/sec
11000 -

10000 [

Out[]=

9000 -

8000 -

. . n * ) : - * ) : = * ; : - * ) - radius (m
8.0x10° 1.0x107 1.2x107 1.4x107 1.6x107 (m)

How about a projectile in a uniform gravitational field ?
we are now going to solve Newton’s equationsin a
uniform field. The units will be meters, seconds, and kg.

We have to learn a little bit about differential equations.

m= g=9.83 (% gravity acceleration in meters/sec"z *)
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mrp= 2D

D[f, x] gives the partial derivative 6f/ox.

D[f, {x, n}] gives the multiple derivative 8" f/ax".

D[f, x, y, ...] gives the partial derivative --- (8/8y) (8 /0x)f.

D[f, {x, n}, {y, m}, ...] gives the multiple partial derivative --- (8™ /ay™) (8" /6 x")f.
DIf, {{x1, X2, ...}}] for a scalar f gives the vector derivative (6 /6x;, 8f/0xs, ...).
D[f, {array}] gives an array derivative. >

Differentiation is indicated by either D[F[x],x] or by F”’[t]. We use it for
Newton’s equations of motion. D[F[x],{x,n}] is the n’th derivative of F[x].

Let’s imagine a ball tossed. z[t] is the vertical motion and x[t] is the horizontal
motion. Remember that to define an equation you must use ==. An equation
has a value of True or False that can be assigned to a variable !

n-= equationsofmotion = {m % D[z[t], {t, 2}] == -mg, m* D[x[t], {t, 2}] == O}
ouf-l= {Mz”[t] =-9.8m, mx”[t] == 0}
1= VX0 = 203 vzO = 20;
initialconditions = {z[0] == 0, X[0] =0, z'[0] == vzO, x'[0] == vXx0 }
oup - {z[0] =0, x[0] =0, z/[0] =20, x' [0] =20}

n-- alltogether = Join[equationsofmotion, initialconditions]

our - {mz”[t] =-9.8m, mx"'[t] =0, z[0] =0, xX[0] =0, 2/[0] =20, x'[0] =20}

We use DSolve to solve the equations. But we have to join all the equations
together.

n-1= answer = DSolve[alltogether, {z[t], x[t]}, t]
our- {{z[t] >20. t-4.9t%, x[t] > 20. t}}

when does the ball come back down to z=0 ? Solutions are in the form of a
substitution rule.

3= times = Solve[z[t] == 0 /. answer, t]
. ReplaceAll: {answer} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing.
. Solve: z[t] == 0 /. answer is not a quantified system of equations and inequalities.

ourg= Solve[z[t] = 0 /. answer, t]



unit3-mechanics.nb

n= totaltime = t/.times[[2]]
. Part: Part specification times[[2] is longer than depth of object.

- ReplaceAll: {timesIIZ]]} is neither a list of replacement rules nor a valid dispatch table, and so cannot be used for replacing.

ourt= t /. times[2]

Lets make a plot of the trajectory !

1= ParametricPlot[{x[t], z[t]} /. answer, {t, O@, totaltime}, PlotStyle » {Red, Thick},
Frame - True, FrameLabel -» {"X meters", "Z meters"}, LabelStyle -» {Medium, Bold}]
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Let’s imagine that there is a wall at x = xwall <80 meters. Then the time the ball

hits the wall is

twall = xwall/vx0. The ball will reflect, but its upwards/downwards motion is
not disturbed.

We can therefore replace x[t] with a If statement.

This is getting pretty sophisticated ! Butitis not difficult to do. | even drew a
line where the wall is.
Try changing the parameter xwall to see what happens to the plot.

mr= Xxwall = 303
twall = xwall/vxe;
ParametricPlot[{If[t < twall, x[t], 2 xwall-x[t]], z[t]} /. answer,
{t, 0, totaltime}, PlotStyle » {Red, Thick}, Frame - True,
FrameLabel » {"X meters", "Z meters"}, LabelStyle » {Medium, Bold},
Epilog -» {Directive[Thick], Line[{{xwall, 0}, {xwall, 20}}1} ]
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Lets review some of the many plotting functions.

Plot - we already used this

LogPlot - makes a plot with vertical axes Log
LogLinearPlot - makes a plot with horizontal axes log.
LoglLogPlot

Plot3D - plots a surface in 3D

ParametricPlot - plot a curve in 2D with a parameter (time)
ContourPlot - make a 3D plot with one dimension as
contours

ListPlot - makes plots of lists of data points.

n-)= LogPlot[10*x, {x, 0, 100}]

AAAAAAAAAAAAAAAA
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1= LogLinearPlot[Sin[x”"2], {x, 0, 3}]

1.0

051

Outf#]=

! !
0.005 0.010

0.050 0.100

-05F

LogLogPlot[ProductLog[x], {x, 0, 100}]

(* this is a weird function it is also called LambertW x)

Out#]=

L L
0.5 1 5 10 50 100
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- Plot3D[Sin[x +y], {X, ~2Pi, 2Pi}, {y, -2 Pi, 2Pi}]

1= ParametricPlot3D[{Sin[3 t], t Cos[5 t], t},
{t, -Pi, Pi}, PlotStyle » {Red, Thick}, AxesStyle - Thick]
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Out[+]=
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nj- ContourPlot [Exp[-x”2] Exp[- (y-3)A2] + Exp[- (x-1) A2] + Exp[- (y) "2],
{x, -5, 5}, {y, -5, 5}]

Out[¢]=

Let’s do a Rocket problem. This is something that can be
done in the class. This one can be done with just algebra.
But it is not simple.
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A small rocket with mass m has a thruster that operates
for a very brief time (dt) and the rocket flies to a height h.

How can we approximately figure out the average force
(fave) in Newtons that was applied to the rocket by the
thruster?

We can do the experiment with a bottle rocket filled with
vinegar and soda. We have to figure out both the time dt
and the force fave and therefore we need two equations.

What if we double the mass of the rocket by attaching
some small weight and measure the height again ?

4= rocketmass = 0.010 ;3 (* in Kg x)
heightl = 20; (* meters with the first mass )
height2 = 4.9
(» meters with the mass doubled by attaching a coin for example x)
Clear[g];
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Now we do a little bit of algebra. Remember that the rocket gets a short burst
of thrust. and so

dt <<time of flight.

v'[t] = F/mass - g; (* this is just Newton's equation when F is on =)
(» recall that F is on only for a short

time dt threfore {integrating both sides x)

VO = F*dt/mass - gdt; (* we are trying to

determine both F and dt. Here we use dt << t *)

Vv = vO -gt; (* velocity as a function
of time after getting the 1initial velocity vO ) ;

sl = Solve[vv =0, t] // Flatten; (x Time to reach the top of the trjaectory x)
ttop = t /. sl

dt F -dt gmass

Out[+]=
g mass

tr2

n= Z[t_] ¢= vOt - g

5

(*» formula for the height of the rocket as a function of time x)
height = Z[ttop] // FullSimplify

dt? (F - gmass)?

Outf#]=
2 g mass?

Lets setup the equations to be solved in terms of variables.
We will plug in the actual values at the end.
remember that the mass is doubled for height 2.

n-1= eql = hl == height

dt? (F - gmass)?

ou-j- hl =
2 g mass?

eq2 = h2 == height /. {mass -» 2 xmass} (* mass 1is doubled x)

dt? (F-2gmass)?

oufJ= h2 =
8 g mass?
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Now solve the two equations for two unknowns. There should be 4 solutions !
;- solutions = Solve[eql&&eq2, {dt, F}] // FullSimplify

(VhT -2+h2 )2 2g (h1+V/hT Vh2 -2h2) mass
Outf+J= {{dt%—\/? , Fo }’
g hi-4h2

(M—Zm)z 2g(hl+x/ﬁx/ﬁ—2h2)mass
F

{dt»\/? , F> },
g hl-4h2
(\/W+2\/W)2 2g(M+W)mass
{dt»—\/? , F->
g Vh1 +2+/h2
{dta\/? (\/ﬁ+2\/ﬁ) ’F%2g(\/ﬁ+\/ﬁ)mass
g vh1l +2+/h2

Now we plug in numbers and see which solution has the correct form.

- finalanswer = solutions /. {g-> 9.8, hl - heightl, h2 » height2, mass - rocketmass}

our-j= {{dt - -0.0203051, F - 9.84875}, {dt - 0.0203051, F - 9.84875},
{dt > -4.02031, F > 0.147247}, {dt > 4.02031, F > 0.147247}}

Notice that two of the solutions have positive answers. This is because these
are quadratic equations. Take the positive answer only. Only one of the
positive solutions satisfies the condition that dtis very small. Therefore the
correct answer is the second one. Fisin Newtons and dtisin seconds.

Notice that it is possible to have no reasonable solution if heightl, height2 are
notin the correct ratio. Have fun thinking about this. Itis amazing that we
can infer short time bursts from a simple measurement.

Now what is the initial velocity obtained after the thrust. This will be in meters
per second. and the time to the top in seconds.

n-p- InitialVelocity = vO /. {g -» 9.8, mass - rocketmass} /. finalanswer[[2]]

ouf-j= 19.799
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1= TimeToTop = ttop /. {g - 9.8, mass -» rocketmass} /. finalanswer[[2]]

ou-]= 2.02031

Let’s now play with planet data that is in Mathematica.
Much of this can be obtained by PlanetData[“planet”,
“property”]. Get the details from Help.

n-1= ? PlanetData

PlanetData[entity, property] gives the value of the specified property for the planet entity.

PlanetData[{entity,, entity,, ...}, property] gives a list of property values for the specified planet entities.

PlanetData[entity, property, annotation] gives the specified annotation associated with the property. >
n-1= PlanetData["Jupiter", "Mass"]

oufe= 1.89813 x 1027 kg

Let’s make a table of “name”, mass, diameter, orbit period, distancefromsun,
and eccentricity, Pluto is no longer a planet !

n-= planets =
{"Mercury", "Venus", "Earth", "Mars", "Jupiter", "Saturn", "Uranus", "Neptune"}

ouy-]= {Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune}

n-1- neededprop = {"Name", '"Mass", "EquatorialDiameter",
"OrbitPeriod", "DistanceFromSun", "Eccentricity" };

n-1= data = Table[PlanetData[planets[[i]], neededprop[[j]]1 1, {i, 1, 8}, {j, 1, 6}]

our-)- {{Mercury, 3.30104 x 106> kg, 30631.9mi, 87.96926 days , ©.308307 au , 0.20563069},
Venus, 4.86732x10%* kg, 7521.0mi , 224.70080 days , 0.719164 au , 0.00677323},
Earth, 5.9721986 x 10** kg , 7926.3mi , 365.25636 days , 1.0145au, 0.016710220},

Mars, 6.41693x102° kg, 4220.6mi , 1.8808476a, 1.45024 au , 0.093412330},

Saturn, 5.68319x10°° kg, 74898.mi, 29.447498 a, 10.0655au, 0.0541506},

{Jupiter, 1.89813x10?" kg, 88846. mi, 11.862615a, 5.40371 au, 0.048392660},
{Uranus, 8.68103x10%° kg , 31763.mi, 84.016846a, 19.8858 au, 0.047167710},

Neptune, 1.02410x10°°kg , 30775.mi, 164.79132a, 29.942 au , 0.00858587}}



n-1= Prepend[data, neededprop] // TableForm

Out{ = ]//TableForm=
Name

Mercury
Venus
Earth
Mars
Jupiter
Saturn
Uranus

Neptune

Mass

3

4,

n-= PlanetData[]

.30104 x 1023 kg

86732 x 10%% kg

.9721986 x 1024 kg
.41693 x 1023 kg
.89813 x 1027 kg
.68319 x 102° kg
.68103 x 10%° kg

.02410 x 102° kg

EquatorialDiameter

3031.9mi
7521.0 mi
7926.3 mi
4220.6mi
88846. mi
74 898. mi
31763. mi

30775. mi
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OrbitPeriod
87.96926 days

224.70080 days
365.25636 days
1.8808476 a
11.862615 a
29.447498 a
84.016846 a

164.79132 a

our-- {[Mercury |, (Venus |, [Earth |, (Mars |, (Jupiter |, (Satun |, (Uranus |, [Neptune |}

DistanceFrom
0.308311 au

0.719164 au
1.01451 au
1.45021 au
5.40371 au
10.0655 au
19.8858 au

29.942 au
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| will leave it to you to convert units into units that you like.

;- Graphics3D[PlanetData[PlanetData[], "OrbitPath"]]

Out[#]=

Before we finish let’s learn how to do various operations
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with lists.
Let’s first define a list.

4= somenumbers = {2.0, 3.4, 4.5, 1.1, 1.2, 2.3, 10.3}
ou- {2.,3.4,4.5,1.1,1.2, 2.3, 10.3}

n(13= morenumbers = {4.5, 2.1, 90.0, 1073, 4.3, 1.2, 0.34}

ouria- {4.5, 2.1, 90., 1000, 4.3, 1.2, 0.34)
Length of the list

ns= Listlength = Length[somenumbers]

outsl= 7
Join two lists.

ni14= Join[somenumbers, morenumbers]

ouria- {2., 3.4, 4.5,1.1,1.2,2.3,10.3, 4.5, 2.1, 90., 1000, 4.3, 1.2, 0.34}
make a list of lists

no- nestedlist = {{2, 3}, {4, 5}, {5, 6}, {2.1, 1.1}}
ourg= {{2, 3}, {4, 5}, {5, 6}, {2.1, 1.1}}

niiop= Length[nestedlist]

out[10l= 4

Flatten out the list

nt= flatlist = Flatten[nestedlist]
ouft1)= {2, 3,4, 5,5,6,2.1, 1.1}

niz= Length[flatlist]

out12= 8

Some arithmatic operations on lists

nis- addedlists = somenumbers + morenumbers

ouis- {6.5, 5.5, 94.5, 1001.1, 5.5, 3.5, 10.64}
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nii6r- substracted = somenumbers - morenumbers

ouie- {-2.5, 1.3, -85.5, -998.9, -3.1, 1.1, 9.96}

ni71= squaredlist = somenumbers”2

oui7- {4., 11.56, 20.25, 1.21, 1.44, 5.29, 106.09}

Map a function on a list. How about exponential ? Map[Exp,

niigy= Map[Exp, somenumbers]

ouio- {7.38906, 29.9641, 90.0171, 3.00417, 3.32012, 9.97418, 29732.6)

nzo= EXp /@ somenumbers

ouzo- {7.38906, 29.9641, 90.0171, 3.00417, 3.32012, 9.97418, 29732.6)

nei= definedF[x_, y_1 t= Xx*y*Exp[x]}

How do | apply this function to a list of two elements ?

nezp= Xylist = {3, 1}
ouz2l= {3, 1}

nez3;- definedF e@ xylist

out23l= 3 e

This mapping and applying can get very complicated. You have to try various
ways. It is very helpful to make compact statement.

ne4= nestedlist
oua= {{2, 3}, {4, 5}, {5, 6}, {2.1, 1.1}}
This will Map and apply to a nest list.

na2= Apply [definedF, nestedlist, 1]
ouz- {6 €, 20 e*, 30 ®, 18.8639}

nza- definedF e@ee@ee@ nestedlist
ous- {6e?, 20 e*, 30 ®, 18.8639}
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This will Thread the function over two lists: taking a number from each and
joining them into a function.

nize;= MapThread[definedF, {somenumbers, morenumbers}]

outzel- {66.5015, 213.944, 36456.9, 3304.58, 17.1318, 27.5287, 104124.}



