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What we would like to learn and how
A fully covariant and non perturbative description of a bound system, with spin dof,
useful for playing the phenomenology of the spin-k⊥ correlations (Hadron tomography) .

Minkowski space and the QFT framework are necessary
Initial strategy:

i) to train and educate our physical intuition through simple applications of the Bethe-
Salpeter equation (BSE) in Minkowski momentum-space, e.g.: fermion-scalar (new) and
fermion-fermion (old) systems in ladder approximation (⇒ analytic behavior of the BS
amplitude, interaction kernels, etc. )
ii) to extend, both phenomenologically and formally, the framework through the inclusion
of gap-equations for the needed self-energy contributions (⇒ consistently cutting the
tower of DSE’s, etc.).

How:
i) Pivotal role of the Nakanishi Integral Representation (NIR) of the BS amplitudes (3-
and 4-legs Transition Amplitudes) and self-energies (2-legs TA)
ii) Light-front (LF) variables, x± = x0±x3 and x⊥ ≡ {x1, x2}, very suitable for managing
analytic integration and spin dof in a very effective way, in Minkowski space, when needed.

F Adding effects in a controlled way, as in NIR+LF, has a great methodological
appealing for non perturbative phenomenological studies in Minkowski space.

Outputs: Valence probabilities and LF distributions.
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Nakanishi Integral Representation - I

Nakanishi proposal for a compact and elegant expression of the full
N-leg amplitude, written by means of the Feynman parametrization
(→ ~α), fN(s) =

∑
G fG(s) (G ≡ infinite graphs contributing to fN):

Introducing the identity

1
.

=
∏
h

∫ 1

0

dzhδ

(
zh −

ηh
β

)∫ ∞
0

dγ δ

(
γ −

∑
l

αlm
2
l

β

)
with β =

∑
ηi (~α) and integrating by parts n − 2k − 1 times, the contribution from a

graph is

fG(s̃) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φ̃G(~z , γ)

(γ −
∑

h zhsh)

φ̃G(~z , γ) ≡ a proper weight function, with ~z ≡ {z1, z2, . . . , zN}, compact real variables
s̃ ≡ {s1, s2, . . . , sN} ⇒ all the N independent scalar products, one can obtain from the
external momenta

The dependence upon the details of the diagram, {n, k}, moves from the denominator
→ the numerator!!
The SAME formal expression for the denominator of ANY diagram G appears
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NIR - II
The full N-leg transition amplitude is the sum of infinite diagrams G(n, k) and it can be
formally written as

fN(s̃) =
∑
G

fG(s̃) ∝
∏
h

∫ 1

0

dzh

∫ ∞
0

dγ
δ(1−

∑
h zh) φN(~z , γ)

(γ −
∑

h zhsh)

where
φN(~z , γ) =

∑
G

φ̃G(~z , γ)

is called a Nakanishi weight function and it is REAL (γ is non compact, while ~z is
compact).

Application: 3-leg transition amplitude → vertex function for a scalar theory (N.B. for
fermions → spinor indexes)

☛
p1

−p2

−p3

Γ

f3(s̃) =

∫ 1

0

dz

∫ ∞
0

dγ
φ3(z , γ)

γ − p2

4
− k2 − zk · p − iε

with p = p1 + p2 and k = (p1 − p2)/2

The expression holds at any order in

perturbation-theory !
Natural choice as a general trial function for ob-
taining actual solution of BSE
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A vertex function f3(s̃) (N.B. s̃ ≡ all the independent scalar products involving the
external momenta) with one leg on mass-shell is related to the two-body BS amplitude
ΦBS . Schematically (G1 and G2: constituent propagators)

ΦBS = G1 ⊗ G2 ⊗ f3(s̃)

Milestones
F The BSE for the celebrated Wick-Cutkosky model (1954), i.e. two massive scalars
interacting through a massless scalar can be exactly solved by using an integral
representation, like the one introduced by Nakanishi.

F F The generalization to massive exchange was validated numerically over the years...

Kusaka et al, exploited the uniqueness of the NIR weight-function for a two scalar
system (they used standard variables); [ PRD 56 (1997)]

Carbonell and Karmanov properly integrated both sides of the BSE of two-scalars,
exploiting Light-Front variables, without reverting to NIR uniqueness; [EPJA 27, 1
(2006)].

⇑ Dorkin, Beyer, Kaptarin and Semikh investigated the two-fermion system
within NIR + Wick rotation (⇒ a critical behavior in absence of vertex form
factors was pointed out) [FBS 42, 1 (2008)]

⇑ C-K evaluated a fermionic system, by using LF variables (!) (critical behavior
confirmed) [ EPJA 46 387 (2010) ]
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Frederico, Viviani and GS, extended the NIR+LF formalism to the scattering-state
BSE [FSV PRD 85, 036009 (2012)]and successfully cross-checked the two-scalar
results, with and without uniqueness, using integration LF variables in a different
context [FSV PRD 89, 016010 (2014)]. The scattering BSE in the zero-energy
limit was also calculated [FSV EPJC 75, 398 (2015)].

⇑ de Paula & FVS extended the study of the two-fermion system by clarifying and
fixing a difficulty with spin dof was [dFSV PRD 94, 071901(R) (2016); EPJ C 77,
764 (2017)].

⇑ Nogueira et al , have investigated for the first time the fermion-scalar bound
system [ PRD 100, 016021 (2019)].
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Projecting BSE onto the LF hyper-plane x+ = 0
NIR contains the needed freedom for exploring non perturbative problems, once
the Nakanishi weight functions are taken as unknown REAL quantities.

Even adopting NIR, BSE still remains a highly singular integral equation in the 4D
Minkowski momentum space. BUT exploiting an expression á la Nakanishi for the
BS amplitude, then its analytic structure is displayed in full

Noteworthy, in the LF framework one recovers a probabilistic interpretation by
expanding the BS amplitude on a Fock basis, and then singling out the valence
component. Hence the probability of finding two constituents in the fully
interacting two-body state can be evaluated.

The valence component is for-
mally obtained by integrating on
k− = k0 − k3 the BS amplitude.
This mathematical step is equiva-
lent to restrict the LF-time x+ in
ΦBS to the null plane, i.e. x+ = 0
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A regular integral equation equivalent to BSE
BS Amplitude

Valence w.f. = ψn=2(ξ, k⊥) =
p+

√
2
ξ (1− ξ)

∫
dk−

2π

︷ ︸︸ ︷
Φb(k, p) =

=
1√
2
ξ (1− ξ)

∫ ∞
0

dγ′
gb(γ′, 1− 2ξ;κ2)

[γ′ + k2
⊥ + κ2 + (2ξ − 1)2 M2

4
− iε]2︸ ︷︷ ︸

NIR
with κ2 = 4m2 −M2 and M = 2m − B.(B ≡ binding energy)
The step for recovering the probabilistic interpretation strongly suggests to apply the
projection on both sides of BSE. This can be actually done by introducing NIR !!

ΦBS

φval g(γ, z)

in
te
gr
at
e
on

k
−

N
IR

Stieltjes transform

N.B. The valence w.f. ψn=2 is a gen-
eralized Stieltjes transform (invert-
ible) of the Nakanishi weight funct.
gb (Carbonell, Frederico, Karmanov
PLB 769 (2017), 418). This obser-
vation enforces the idea that NIR can
be a suitable and general trial func-
tion for solving BSE.
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LF projection of the homogeneous BSE in ladder approx.

Φ(k, p) = G0(k, p)
∫
d4k ′ KBS(k, k ′, p) Φ(k ′, p)

NIR+LF
=⇒

valence w.f. ∝
∫ ∞

0

dγ′
gb(γ′, z ;κ2)

[γ′ + γ + z2m2 + (1− z2)κ2 − iε]2
=

= α

∫ ∞
0

dγ′
∫ 1

−1

dz ′ V LF
b (α; γ, z ; γ′, z ′) gb(γ′, z ′;κ2).

with V LF
b (α; γ, z ; γ′, z ′) determined by the irreducible kernel I(k, k ′, p) (!) and α is

the coupling constant (≡ g 2/16π for the scalar case).

In turn, by adopting an orthonormal basis (Laguerre × Gegenbauer) for expanding
gb(γ, z ;κ2 = 4m2 −M2), the integral equation becomes a generalized eigen-equation,
with eigenvalue α , and the eigenvector composed by the coefficients of the expansion.

F F If the eigen-equation admits a solution, for a given mass M of the system, then we
know how to reconstruct the whole BS amplitude
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Spin dof and BSE

Adding spin dof is a challenge, both on formal and numerical sides.
While projecting ladder BSE with spin dof onto the null plane, one faces with integrals
that could become singular for some values of an external variable.

Fortunately, the prototype of such singular integrals was studied by Yan in the context of
the field theory in the Infinite Momentum frame,(PRD 7 (1973) 1780).
FOne needs a simple generalization

In(β, y) =

∫ ∞
−∞

dx[
βx − y ∓ iε

]2+n = ± 2πi δ(β)

(n + 1)!
[
−y ∓ iε

]1+n

Differently, in the explicit covariant LF framework, the singular behavior of the relevant
integrals was pragmatically healed by introducing a suitable smoothing function
(Carbonell & Karmanov EPJA 46, 387 (2010)).
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BSE for Fermion-Scalar systems

The BSE, without both self-energy and vertex corrections, for a Jπ = [1/2]+ state reads

ΦN(k, p, Jz) = G0(p/2− k)S(p/2 + k)

∫
d4k ′

(2π)4
iKLd(k, k ′, p) ΦN(k ′, p, Jz) ,

with

G0(q) = i
1

(q2 −m2
S + iε)

, S(q) = i
/q + mF

(q2 −m2
F + iε)

(1)

The ladder approximation for scalar and vector exchanges

iKLd
s (k, k ′, p) = −i λs

Sλ
s
F

1

(k − k ′)2 − µ2 + iε
,

and

iKLd
v (k, k ′, p) = −i λv

Sλ
v
F

(/p − /k − /k ′)
(k − k ′)2 − µ2 + iε

with µ the mass of the exchanged boson.
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From general principles, the BS amplitude of the fermion-scalar system, Jπ = [1/2]+,
contains two unknown scalar functions φi , without exchange symmetry,

ΦBS(k, p) =
[
O1(k) φ1(k, p) + O2(k) φ2(k, p)

]
U(p, s)

with

O1(k) = I , O2(k) =
/k

M
, (/p −M) U(p, s) = 0 .

One easily obtains the 2-channel system of integral equations for φ
s(v)
i

⇒ φ
s(v)
i (k, p) =

i

(p/2− k)2 −m2
S + iε

i

(p/2 + k)2 −m2
F + iε

∫
d4k ′

(2π)4

×
(−iλs(v)

S λ
s(v)
F )

(k − k ′)2 − µ2 + iε

∑
j=1,2

Cs(v)
ij (k, k ′, p) φ

s(v)
j (k ′, p)
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Then, by using the NIR of φ
s(v)
i (k, p)

φi (k, p) =

∫ ∞
−∞

dγ′
∫ 1

−1

dz ′
gi (γ

′, z ′;κ2)

[k2 + z ′p · k − κ2 − γ′ + iε]3
,

with gi (γ, z ;κ2) ≡ Nakanishi WFs, κ2 = m̄2 − M2

4
, and m̄ = (mF + mS)/2

we expand the Nakanishi WFs on a basis

Laguerre Polys × Gegenbauer Polys

⇒ the familiar (in the NIR approach!) generalized eigenvalue problem is devised

A g = α B g

.
N.B. differently from both the two-boson and two-fermion systems, the Gegenbauer
polynomials involved in the fermion-scalar system we are investigating do not have
definite parity.
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Scalar coupling αS , for mF = mS and µ/m̄ = 0.15, 0.50 (with m̄ = (mS + mF )/2). First
column: the binding energy in unit mass of m̄, i.e. B/m̄. Second and fourth columns:

coupling constants αS
M , obtained by solving the BSE in Minkowski space. Third and fifth

columns: Wick-rotated results, αS
WR

B/m̄ αS
M(0.15) αS

WR(0.15) αS
M(0.50) αS

WR(0.50)

0.10 1.506 1.506 2.656 2.656
0.20 2.297 2.297 3.624 3.624
0.30 3.047 3.047 4.535 4.535
0.40 3.796 3.796 5.451 5.451
0.50 4.568 4.568 6.404 6.404
0.80 7.239 7.239 9.879 9.879
1.00 9.778 9.778 13.738 13.738

For increasing values of B/m̄, the size of the system shrinks, and repulsion starts to
sizably oppose the binding. This can be heuristically understood: the fermion-scalar
vertex, for on mass-shell fermions, contains the scalar density ū u, and the Dirac matrix
γ0 generates a minus sign in front of the contribution produced by the small
components, more and more relevant when the system becomes more and more
relativistic.

Giovanni Salmè (INFN - Rome) BSE & spin - LC 2019 16 / 27



Valence probabilities, for the scalar exchange with mF = mS . PNoA
val ≡ ↓⇑ ( constituent

spin is anti-aligned to the system spin ) - PA
val ≡ ↑⇑ First column: the binding energy in

unit mass of m̄.

µ/m̄ = 0.15 µ/m̄ = 0.50

B/m̄ Pval PnoA
val PA

val Pval PnoA
val PA

val

0.10 0.81 0.02 0.79 0.88 0.03 0.85
0.20 0.77 0.03 0.74 0.85 0.05 0.80
0.30 0.76 0.05 0.71 0.84 0.07 0.77
0.40 0.75 0.06 0.69 0.83 0.09 0.74
0.50 0.76 0.07 0.69 0.83 0.11 0.72
0.80 0.81 0.13 0.68 0.88 0.18 0.70
1.00 0.90 0.19 0.71 0.98 0.25 0.73
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µ/m=  0.15  -    B/m=  1.0  

gi for an equal-mass (1/2)+ system, and for a scalar exchange. Solid line : g1. Dotted
line: g2. Notice that the normalization factor is the same for both NWFs, namely
g1(0, 0;κ2). (Nogueira et al PRD 100, (2019))
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Equal mass case mS = mF , scalar exchange
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Longitudinal LF distributions for a fermion in the valence component for µ/m̄ = 0.15
(left panel) and for µ/m̄ = 0.50 (right panel), for a scalar exchange. Solid line:
B/m̄ = 0.1. Dotted red line: B/m̄ = 0.5. Dashed blue line: B/m̄ = 1.0. (Nogueira et al
PRD 100, (2019))
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Equal mass case mS = mF , scalar exchange
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Transverse LF distributions for a fermion in the valence component for µ/m̄ = 0.15 (left
panel) and for µ/m̄ = 0.50 (right panel), for a scalar exchange. Solid line: B/m̄ = 0.1.
Dotted red line: B/m̄ = 0.5. Dashed blue line: B/m̄ = 1.0.(Nogueira et al PRD 100,
(2019))
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Vector coupling αV , for mF = mS and µ/m̄ = 0, 0.15, 0.50. First column: the binding
energy in unit mass of m̄, i.e. B/m̄. Second, fourth and sixth column: coupling

constants αV
M , obtained by solving the BSE in Minkowski space. Third, fifth and seventh

column: Wick-rotated results, αV
WR , with a numerical uncertainty for B/m̄ = 0.5 due to

some instabilities in the Gaussian quadrature adopted.

B/m̄ αV
M(0) αV

WR(0) αV
M(0.15) αV

WR(0.15) αV
M(0.50) αV

WR(0.50)

0.10 0.513 0.513 0.608 0.609 0.849 0.854
0.20 0.758 0.761 0.823 0.823 1.009 1.015
0.30 0.936 0.938 0.979 0.978 1.127 1.129
0.40 1.074 1.074 1.107 1.097 1.225 1.216
0.50 1.189 1.18 ± .03 1.214 1.19 ± .03 1.311 1.28 ± .04

A critical behavior of the coupling constant, due to the dimensionless character of the
fermion coupling, manifests for B/m̄ > 0.5, as in the two-fermion case when a pointlike
vertex is adopted (see Dorkin et al, FBS 42,1 (2008) and Carbonell-Karmanov JPA 46,
387 (2010)).
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Valence probabilities for the vector exchange, with mF = mS . PNoA
val ≡ ↓⇑ - PA

val ≡ ↑⇑

µ/m̄ = 0.0 µ/m̄ = 0.15 µ/m̄ = 0.50

B/m̄ Pval PnoA
val PA

val Pval PnoA
val PA

val Pval PnoA
val PA

val

0.10 0.69 0.01 0.68 0.73 0.02 0.71 0.75 0.04 0.71
0.20 0.62 0.02 0.60 0.64 0.03 0.61 0.66 0.05 0.61
0.30 0.57 0.03 0.54 0.58 0.04 0.54 0.60 0.06 0.54
0.40 0.53 0.04 0.49 0.54 0.05 0.49 0.55 0.07 0.48
0.50 0.50 0.05 0.45 0.50 0.05 0.45 0.52 0.07 0.45
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Equal mass case mS = mF , vector exchange
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Longitudinal LF distributions for a fermion in the valence component for µ/m̄ = 0.15
(left panel) and for µ/m̄ = 0.50 (right panel), for a vector exchange. Solid line:
B/m̄ = 0.1. Dotted red line: B/m̄ = 0.3. Dashed blue line: B/m̄ = 0.5.

For increasing B/m̄, the size of the system shrinks and the helicity conservation
becomes apparent, since the fermion mass starts to play a minor role.
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Equal mass case mS = mF , vector exchange
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Transverse LF distributions for a fermion in the valence component for µ/m̄ = 0.15 (left
panel) and for µ/m̄ = 0.50 (right panel), for a vector exchange. Solid line: B/m̄ = 0.1.
Dotted red line: B/m̄ = 0.3. Dashed blue line: B/m̄ = 0.5.
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A mock nucleon
A state (1/2)+ with a mass ratio mS/mF = 2 and a binding B/m̄ = 0.1 and two values
of the exchanged-vector mass: µ/m̄ = 0.15 and µ/m̄ = 0.50

Pval = ↑⇑ with OAM L = 0 + ↓⇑ with OAM L = 1
< SN

z >= 0.5 P↑ − 0.5 P↓ ∼ 0.33

Valence contribution to the longitudinal-momentum distribution

0 0.2 0.4 0.6 0.8 1
 ξ 

0

0.5

1

1.5

2

2.5

φF (ξ
)/p

va
l

µ/ m =  0.15  -    B/ m=  0.10  -  Pval = 0.75 
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µ/ m =  0.50  -    B/ m=  0.10 - Pval = 0.77

dotted line= ↑ ⇑ with orbital a.m. L = 0 - ξ → Bjorken variable - No evolution applied
mq = 330 MeV , mg = 33 MeV mq = 330 MeV , mg = 110 MeV
P↑ = 0.71 − P↓ = 0.4 P↑ = 0.70 − P↓ = 0.7
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Valence contribution to the transverse-momentum distribution
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dotted line= ↑ ⇑ with orbital a.m. L = 0 - γ = |k⊥|2 - No evolution applied

N.B. the ladder exchange of vector boson should govern the tail of the momentum
distributions (also in more refined approaches)
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Conclusions & Perspectives
A systematization of the technique for solving BSE with (and without) spin dof
has been reached, and the cross-check among results obtained by different groups,
for different interacting systems (with kernels in ladder and cross-ladder
contributions) has produced a clear numerical evidence of the validity of NIR for
obtaining actual solutions.

A general comment to be reminded: the LF framework has well-known advantages
while analytical integrations are carried out, and its effectiveness is displayed in its
full glory when the bound systems with spin dof are investigated.

The numerical validation of NIR strongly encourages to face with needed
improvements for approaching a continuous QFT in Minkowski space, e.g.
including self-energies and vertex corrections evaluated within the same framework
(work in progress on the gap equations)

An interesting possibility for the tomography of the nucleon (i.e. the study of
spin-k⊥ correlations): Fragmentation functions?

γ∗

π
q

Closed form of further approximations to the interaction kernel? From the ladder
series to the cross-ladder T-matrix...

✠
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