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Invariant NP Coordinatization

ID tetrad basis {&gq); - ;é(3)}: basis of unit orthogonal vectors in Minkowski's space
such that: [n(”)(l,) = diag(1; -1; -1; -1).
Define NP tetrad basis (basis for light-front dynamics):

1 1
ey = — (€o) + € , €eu):=¢8& 1=1,2) |, e_y:=— (€q —©
(+) ﬁ( (0 (3)) (1) w ( ) (=) \@( (0) (3))

Properties (o, 8 = 1,2):
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ey ey y=0=e_y-e_y , euy-ey=1 | 0 -1 0 O
(+.) (+)_ s (=) &) ’ (+_) 0 (_) . = [ﬁ(a)(b)] =lo o -1 o
€a) " &(B) = TO(a)B) » C+) Ea) =YV =€) &a) 10 o o

Invariant NP components of a vector:
A=A ; A=A AL = AD) AD) = AL
Scalar product:
A-B=AMNBE) L A gH) _ AL gL

+)

Choice: e() is the NP-time direction, x™) is the invariant NP-time.
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S(g)-operator and T, distributions

S(g) operator definition:

+oo
1
S(g) = 1+Z;/d“xl---d“xnn(xl;--- i xn)g(x1) - - g(xn)
n=1

Notation: X :={x; e M:j=1,--- n}, T, = Ta(X),g(X) = g(x1) - - - g(xn),
dX = d*xq -+ - d*x,. Then:

+oo
Se) =1+ 7 [ XT(0e(X)

Inverse operator:

+oo n
() =1+ %/dX'IN',,(X)g(X) D00 = SO S T (X)) T ()

r=

P,: partition of X in the r non-empty disjoint subsets Xi,--- , X,.
Translation invariance:

To(xt; -+ 1 %n) = Ta(Xt — Xn; -+ 1 Xn—1 — Xn; 0)
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Causality Condition

Two points x,y € M are causally connected if their difference x — y is a time-like vector
or a light-like one. For X, Y C M define the relations:

X<YeveX,yeY: xD<cy® XLy:o vxeX,yeY: (x—y)?<0.

Causality Axiom:

1.- Let g1, € S(R*) with causally connected supports, supp(g1) < supp(g2). Then:

S(gr + &) = S(g2)5(&1)
2.- Let g1, € S(R*) two switching functions such that supp(g1) ~ supp(g2). Then:
S(e1 + &) = S(g2)5(81) = S(g1)S(g2) - O
Immediate consequence: For X; < Xz or X; ~ X, we can perform the following decompo-
sition:
To(X) = Tw(X) Toom(X1) 5 Ta(X) = T(X1) Toom(X2)

For Xi ~ X, the order of the decomposition is arbitrary.
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Inductive Construction Idea

Suppose we know Tm, Tm (m=1,---,n—1). We want to find the next order T,
distribution. Define:

ALX) = T (X)To-m (e U{x}) , Ri(X) =D Toem (U ) T (X1)
P> P>

P,: partition of X \ {x,} in disjoint X1, Xo; X1 # 0.
Advanced and retarded distributions of order n:

An(X) =D Tor(X0) Toem (X U {xa}) = AL(X) + To(X)
PO

Ro(X) = Y Toem (X U {xa}) Ty (X1) = RU(X) + Ta(X)
PO

P{?): now in P; it is allowed X; = (). We see that the T, distribution can be found as:
Ta(X) = An(X) — AL(X) = Ra(X) — Ri(X)
Causal distribution:

Du(X) = Ry(X) = Ay(X) = Ra(X) — An(X)
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Causality Theorems

Terminology:
VE(x) = {y eM ‘ (y=x)P2>0,y >/ < x(+)} = VE(x) ux(7) = axis
Sets of n points:
M (x) = {(xl;--- ixa) EM" | Vje{l,---,n} : x € Vi(x)} .
Theorem 1: For n > 3:
supp (Dn(xa; -+ 1)) € T (xa) U T, (x0)
Moreover, D,(X) can be non null only if X € T} (x,) or X € [, (x,). O

Theorem 2: Let D,(X) be a causal distribution with causal support, which therefore can
be splitted into a retarded and advanced distributions R,(X) and A,(X), with supports in
I(xs) and T (x,), respectively. The distribution T,(X) constructed with them satisfies
the causality conditions. [J
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Splitting of the Causal Distribution: Singular Order of a Distribution

Causal distribution of order n: D,(X ) S dR(X) s Ce(p?):
Define d € S(R*"™*) as: d(X) := df(x1 — Xn; -+ ; Xa—1 — Xn; 0) ; supp(d) C I}, (0)U
I ,(0), which is split as:

d=r—a ; supp(r) CTi_1(0) , supp(a) CT,_1(0)

First proposal:
n—1
dﬂ:WMM)mhMﬂ:H@@”ﬂW)
j=1

{Discontinuity surface of x(X)} Nsupp(d) = X{~)—axis = the behaviour of d(X) in the
neighbourhood of the X(7)—axis is essential for the splitting procedure.

Definition 1: Let d € S’'(R"), p be a positive-definite continuous function. If the limit
nmmﬁw(wﬂgWMﬂ:¢m#o

exists in S’'(R™), then d_ is the quasi-asymptote of d at the X(~)—axis, with regard to
the function p. O

Definition 2: If the quasi-asymptote of d at the X (™) —axis is obtained for p(s) = s“—,
then w_ is the singular order of d at the X(7)—axis. O
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Splitting of the Causal Distribution: Configuration Space |

Idea for the splitting: Substitute the discontinuous Heaviside's functions by a continuous
function which goes to it in some limit. Define the continuous non-decreasing function:

0 ; t<0
x(t):=<<1 ; 0<t<l1
1 ; t>1

The retarded and advanced distributions will be given by the limits:

HX) = lim x (X;ﬂ) d(X) . a(X)=limx (—XH)) d(X

s
Using Cauchy's criterion, the above limit exists if w_ < 0, and it could not exist for
w— > 0.

Negative singular order (w_ < 0):

r(X) = lim x <¥) dX)=© (X(“) d(X)
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Splitting of the Causal Distribution: Momentum Space |

Definition 3: Let d € S'(R™), and let p be a positive-definite continuous function. If the
limit p p
: 5 ). (L) ¥ g%
| d S Bp ) e(P) ) = (ds
sg&p(S)( ( Pt ())W( )> (d—; )
exists V¢ € S(R™), then d_ is the quasi-asymptote of d at Py, Py = 4o0. O

Negative singular order (w_ < 0):

+oo

N d ((tpu+yi P1) i p2i- -+ i Pa-1)
P(P) = 27r5g“ (P1(+)) / 1—t+sgn (le)) o+ dt

—o0
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Application: Propagators of the Free Fields

Scalar field: Commutation distribution: D(p) = 5-sgn (p) 3(p* — m?), with w_ = —2.
Foo 2 2
- sgn (P(-)) 9 (2tp()P(-) — Py — m°)
D™ (p) = —(27) *sgn (p+)) / _(+) dt
1 —t+sgn(p)) i0

—o0

w2
Folut)
_>58n (PH)P(-)) / 2p(4)P(-)

= —(2m) ~—dt
2pcopo] S 1=t +sen (py) i0F
_ 1
=—(2n)?
(27) p2 — m? +sgn (p(_)) i0t+
, AF . Aret A(—) _ —2 1
Feynman's propagator, D" (p) := D"*(p) — D' /(p) = —(2m) P
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Application: Propagators of the Free Fields

Fermion field: Comm. dist.: $(p) = 5= (p + m)sgn (p_y) 6(p> — m?) has w_ = —1.
crei — +m )
§%(p) = —(2m) [ ——F __ 2

p? —m? +sgn (p()) i0F 2p(-)

N N R +m (+)
Feynman'’s propagator: 57 (p) := $(-)(p) — §(p) = (27) 2 <p2 _Pm2 o 2’;(7) )

Radiation field in NP-gauge: Commutation distribution:

A i k a)Tl(b + T(a k b .
D(a)(b)(k) = Esgn (k(_)) 6(!(2) <7](a)( ) — W , Wlth w— = —27 —1.
27) 2 ke + nake) | K
D by (k ( ) — —2n R a
@6 k) = = een (k) i0* {77( )(b) = PACLE
: AF (2m)~? k@) + ke | K
Feynman’s prop.: D(,) (k) = i e T + K”(a)n(b) :

Instantaneous terms of Feynman’s propagators are a consequence of the splitting of the
causal distribution.
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Splitting of the Causal Distribution: Configuration Space ||

Non-negative singular order (w_ > 0): The splitting is trivial for test functions:
lw_]+1 ’
p(X) = (X 0(x) @ D Lye (0:0: X)) = 0for b < Jw- | .

For a general test function, define the projection operator W as:

lo_] (xD)"
(We)(X) = p(X) — w(X) Z (Xb!)D{;,L)cp (O;O(“;X(’)) ,

with w € S (R™) an auxiliary function such that:
w (0,0 xO) =1, D yw (0,00 X)) =0 for 1< e < |w- |

With these considerations, the retarded distribution is defined in the following way:

(o = (imx (X) a0 w0 = @rowe)

S
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Splitting of the Causal Distribution: Momentum Space |l

Non-negative singular order (w_ > 0):

P(P) = (27)~ / dQé(Q) (d(P - Q)

Lw J
(2w)*f ” ) / dP' Dpr(y.,1yd(P' — Q)W (P(yy; P(Lyi P(_) — P))"

r =d on [t (0)\ X")—axis, even if we add to r terms which are non-zero on the
X(=)_axis. Those additional terms can be chosen in such a way that the dependence with
w vanishes: Retarded distribution with normalization line K = (K(+)? Ky P(,)):

. i dq 5
Fu(P) = E/ q-+i0* {d ((Preoy = @i pr) i p2i- - i poa)
[w— J b
_ Z K1) Dreyyd (ki) — ai k) ki koo1) ¢

which satisfies the normalization condition:
Dl 1yik(K)=0 ; b<|w_|
Central splitting solution: K = (0;0(1); P(_)).
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Splitting of the Causal Distribution: Normalization Terms

(r;a) and (F; 3): two solutions of the splitting problem.
d=r—a=Ff-3d=>r—-F=a—-3.

Support of Lh.s.: T}_;(0), support of r.h.s.: T, ;(0), hence the equality can hold only
if the support of the above quantities is the intersection of those two sets, that is, the
X()-axis. That means that r and 7 can only differ by normalization terms of the form:

[wl ]

00700~ 37 & (x) s (x)

a=

with C, (X(_)) some distributions of the variables X(~). Those normalization terms only

appear for w” > 0, while the retarded solution for w” < 0 is unique.
In momentum space, the indefinite terms are:

W]

Z G (Py) Pl

This normalization terms (the distributions éa) must be fixed by other physical conditions
besides causality.
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Application: SQED4

In CPT the one-point distribution is defined as (linear in e):
Tix) = —i () Ax) i) = e 16 ()T ()
To go to second order we need:
Ax(xaix) = Tia) Th0e) = —Ti(a) Ta(e) , Ra(xix) = =Ti(e) Ti(x) .
Causal distribution of second order (y = x — x2):
Da(xaixe) = € { [ 167 (a)0up(x)e (0)drplx) s — 10! (x)0ue(x0)0e' (xa)ip(a)
= 106" (a)p )t ()Bup(e) : + 1 Bupt (x)e(x1)Bue! ) pl) : | IDH (1) (1)
+ [ reba)e!(): 19,0.D()+ :0up(x)¢! (x2): i0,D(y)
()t () 0.D()+ 1 Bup(x1)Due ()t ID(y)
ol (et 19,0,D(v)+ 106! (xa)p(x): i0,D(y)

:@T(Xl)autp(xz): i0,D(y)+ :8M¢T(x1)6,,<,p(xz): iD(y)] T A (x1) A (x2) : +} )
(2)
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Application: SQED4

Moeller’s scattering: D3 (x1;x2) = —iD(ays)(y) 1@ ()P (%) :
T (%) = R (xa;0) — R (i) = —iDp,(y) 1" ()" ()

Second order S, operator in the adiabatic limit (g — 1) with normalization term allowed
for w” = 0:

SV — _é(zw)*z/d"kd“xlc/“xZe*"ky (ﬁﬁy(k) +C (k(_))) P 0a)” () :
Choosing (locality condition):

€ (k) = m) 7™

A A _ 1 kuny + nuky
= B0+ € (k) = -0 gy (g - )
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Application: SQED4

We identify the chosen term ¢ (k(,)) as the instantaneous term of the interaction La-
grangian density in the usual approach, which has arose in CPT as a normalization term
by imposing a locality condition:

i . 1 .
SM—...— 7/d4x1 P (xa) i a) s
2 9y
For the initial and final defined momenta states

b'(q)b'(p)Q and b'(q:)b"(p2)Q

the contribution of the remaining non-local terms vanish, so that the result is equivalent
to use simply:
- 8uv
—(27) 2o
(27) k2 4+ i0t
This proves the equivalence with instant dynamics for Moeller's scattering of scalar parti-
cles.
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Application: SQED4

Compton’s scattering: In DS appear the numerical distributions (o, 8 = 1,2):
w-[Dl=-2 ; w_[§-)D]=-2 , w_ [guD]=-1 ;
w-[005D] = =2, W [90wD] = -1 , w- [0ads)D] =0

Performing the splitting and writing the normalization terms:

Ty (x1; %) = ie? : AP () AP (x,) :
x{= (rel)e’Ce): + 10! (x)p): ) ddm D ()
+ (0 p0a)e! ()t + 109! ()pe): ) 9w D7 ()
( e(x1)0mye' () + o' (xa)dmp(x): ) 9D  (y)
T (:0p0a)dne (o) + :9me! ()amele): ) D)}
—ie? 1A L)(Xl)A L) (x): {C(y( ) tp(x)e X2)

) et o ()
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Application: SQED4

We use physical conditions to fix the normalization terms:

(A) Charge conjugation invariance:
(Uy @ Ua) Tolxa; - i x0) (Up @ UA) = To(x - 5 xa)

with: Uyp(x)UL = ¢f(x) , UaA*(x)U}, = —A(x). Then: C (y(f)) = (y(f)).
(B) Residual gauge invariance: Imposing that T¥ is invariant under

A@(x) = AP(x) + oA (x(”; xu)), which guarantees A'Y) = A = 0:

—[6fC)eta): + ol ()ete): | (dwol) —aw [ () 5 (v)])

+ [ 167 CRnp): + 1 0mel a)ete): | € (1) 8 ()

— [Fome Ce)eta): + ol ()amete): |dy) =0 = ¢ () =5 (y) .
The contribution of this normalization terms to S in the adiabatic limit is:

1 .
50 d*xid*x T2C(X1; Xp) = — ie? / d*x :A(L)(Xl)A(L)(Xl): :@T(xl)gp(xl) :
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Application: ¥ ¢ Model

o: Neutral spin zero field; : fermion field. One-point distribution:

Ti(x) = —ig 9(x)(x): ¢(x)
=1 for ¢ scalar, [ = 4®) = i497142,6) for o pseudoscalar.

Boson-fermion scattering:

DPF) (xiix0) = ig? (1 0(x)TS(M(xe): — ()T S(=y) ()t ) t(xa)p(xe) :

Singular order: w_ = —1. Performing the splitting and writing the normalization terms:
T (i) = { 1000 (~ig’rS (I + ¢ (y) 5 (v) ) i)
— 190e) (=g’ (=T + ¢ (yO) 5 (v ) ) wla): } elx)el):

R (+) A
Choosing C(p(i)) = —i(27‘r)_2g252’1’) = (' (p(,)) (6 = +1 for I = 1,’}/(5)) the
(=)

instantaneous part in 57 (y) is cancelled (locality condition).
Contribution of normalization terms to S, in the adiabatic limit:

/d x1d XQT( (x1 x2) /d x1 ro(xa)p(xa): (Xl)eg ¢(x1)
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Conclusions

o When the causality axiom is referred to the x(*) coordinate, causality theorems in
LF dynamics allows the retarded and advanced distributions to be non-null on the
entire x(7)—axis. Then the normalization terms are defined in this region.

@ Instantaneous terms in the propagators arise in the splitting procedure of the
commutation distributions.

o In the applications, the normalization distributions can be chosen in such a way that
locality is preserved. They reproduce the non-local terms in the Lagrangian density
in the usual approach.

@ Residual gauge invariance implies the arising of the second order vertex of SQED as
a normalization term.
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