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Dates

e 1949: Dirac introduced 3 simplified “forms of relativistic
dynamics” ldentified by having the largest kinematic
(interaction-free) subgroups.

1965:
1973:
1976:
1991:

[K', PY) = i6;(Ho + V)

Infinite momentum frame
Light front QFT

Light front RQM

First light-front conference

Heidelberg 1991 (#1)

Palaiseau 2019 (#38).



What is a light front / light-front dynamics?

Light front := hyperplane tangent to a light cone:

’X+ ::XO—}—i-x:O‘

The light front is invariant under a 7 parameter
(kinematic) subgroup of the Poincaré (1873 L’Ecole
Polytechnique) group.

Kinematic subgroup includes 3 translations tangent to
the light-front, a 3 parameter subgroup of light-front
preserving boosts, and rotations about the 2 axis.

Light-front dynamics: Interactions appear in the (3)
generators of transformations that do not preserve

xT =0.

Light-front dynamics has the largest kinematic subgroup
of Dirac’s forms of dynamics.



Special relativity in quantum theories

Quantum measurements:

P=|le)  (W[Alg)  Tr(pA)

Inertial reference frames are related by Poincaré
transformations: x* — x* = A¥_ x" + a*.

Special relativity (QM) - quantum measurements cannot
be used to distinguish inertial reference frames.

Pr=P (WA = (@lAlY)  Tr(pf'A) = Tr(pA)

Wigner - 1939 - necessary and sufficient conditions for
relativistic invariance:

W) = UNa)lw)  A'=U(A,a)AU'(A, a)

p' = U(A, a)pU' (A, a)



SL(2,C) ~ Lorentz group
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Kinematic subgroup (preserves x™ = 0):
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Poincaré group generated by 10 1-parameter subgroups
e Generators
PH yC— T
e Generators transform like tensors
U(A,0)P*UT(A,0) = A1, pY
U(A,0)J* UT(A,0) = A=t AT g goP
e Invariants:
M? = —PFP,  W? = WHW, = M?S?
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Light-front generators

e Kinematic
K3 =30 Fl = j10_ 3t F2 = j204 423 light-front boosts
2= 2 rotations about 2z
T =P0pP3 P, = (P P? translations tangent to LF
e Dynamical

Fl _ JlO —|—J317F2 _ J20 _ J23,P_ _ PO _ P3

e Light-front dispersion relation and spectral conditions

~_M+P3 +
pr="_Lzo P20




Particles, commuting observables, bases

Light-front spin (P operators)

i 1 . i A— v
St = el (PYuhg' (P)'v )"

Commuting observables

M? 52 Pt Pt p? S3
N—_————

5]

Single-particle (irreducible) basis vectors

[(m, $)B, 1)

Finite Poincaré transforms (p’ = Ap)

Ul (m. )5 ) = &7 2|(m. )5, |22 D2, N (AWM )]



Observations

e U(A, a) unitary.

e (A, a) € kinematic subgroup =

ip'-a p+/Ds /\—1 AD)AA
€ s uu[ w (A\P)M\(p)]

independent of m!
e Light-front boosts are a subgroup =

IfF A = Ap(p")

Ruir (A, P) = Ng (M (P")P)A (P )Am(p) = |

i.e. the light-front Wigner rotation of a light-front boost
is the identity (no rotations in subgroup).



More light-front observations

The light-front hyperplane contains light-like separated
points - it is not a suitable initial value surface - --

.-+ but - if P~ is self-adjoint then e 2" "
continuous unitary one-parameter group.

is a strongly

If R is a rotation (not about the z-axis)

Ruir(R, p) = Ay (Rp)RA(p) # R

depends on the momentum and mass and is not R.

The means that general rotations are dynamical and
light-front spins cannot be added with SU(2)
Clebsch-Gordan coefficients.

The equation defining the particle’s rest frame

pt = p~ = m is dynamical!



Equivalence to Dirac’s instant form:
Polar decomposition of SL(2,C) matrices, canonical
boosts and Melosh rotations
A= (ADY2 (AMT)Y2A = Ac(p)R(p)
—_—— — ——
positive unitary

Ac(p) = canonical boost; when A = Ag(p) the rotation
R(p) = Rm(p) is called a Melosh rotation:

Rm(p) = A (P)Mbr (p)
Canonical spin defined by:
i1 v ij '
St = Seih (PY A (P " = RE(P)S]
The instant and light-front single particle bases are
related by:

[(m, s)p, pic) Z| m, s)B, uf) (p)Duf#c R (P)]



Equivalence to Dirac’s instant form:

e Any unitary representation of the Poincaré group can be
decomposed into a direct integral of irreducible
representations.

e Instant and front-form dynamics are related by

[(m. ), pc) =D |(m, )b, pur) | - ( )D,i% R (p)]

on each irreducible subspace.

e The coefficients

P+ s -1
entp) vl (P

are dynamical - they require diagonalizing M and S



Systems of particles (useful basis choices)
e Tensor product basis
‘(mla Sl)ﬁla M1,y (mn7 Sn)ﬁ”? ,U,n> = ®i‘(mf7 Si)ﬁiv /j,,>

@i{(mi, s1)Bi, 111 UM ai) 1) = (0] U (N i) |@i{ (i, i), )
e Alternative (LF boost invariant) basis

’ﬁ7§l7kL17M17"' 7£n7kLna,Ufn>
) -
P::Zpiv gi = ﬂa Z‘fl:l
kii:=pLi—&PL Z k. ;=0

H dp; — dP H(dfid2kii)5(z § — 1)5(2 ki)
i J k

e &,k and y; are invariant with respect to light-front
boosts! (no Lorentz contractions!)



Irreducible light-front bases

e Clebsch-Gordan coefficients for the Poincaré group in
light-front irreducible bases (construction summarized
below):

e Convert single-particle spins to canonical spins with
Melosh rotations.

e Canonical spin - Wigner rotation of a rotation is the
rotation — they can be added with SU(2)
Clebsch-Gordan coefficients

e Add canonical spins and relative orbital angular momenta
with SU(2) Clebsch-Gordan coefficients in two-body rest
frame (A.(Rp)'RA(0) = R).

e Boost result with light-front boost.

e Needed to formulate scattering asymptotic conditions.



Light-front Clebsch-Gordan coefficients

|(kaj)|37,u; / 5> =
> I(m1, 1)p1, pa)|(m2, $2)B2, p12)
D3t NG (kA (K)ID;Z [N (k2 )N (K2)] Vi (k1) %

pi ps (e1(k) + ea(k))

<5 77/175271/2‘571/ ><S7V ,/,m‘j,/L>
) B ex(k)ea(K)(pi + p3)

where the variables are related by

P=p1+p2 ki =k =N} (P)p1 ko = N} (P)p2

M = \/k2+m§+\/k2+m§ = e1(k) + e2(k)




Dynamics

P3, + M3+ V
Po

[V,G]=0 G; = kinematic generators

P~ =

These conditions preserve the kinematic subgroup, but
they are not sufficient to ensure a relativistically
(rotationally) invariant dynamics.

A necessary and sufficient condition for rotational
covariance is the requirement that the results of any
calculations are independent of the orientation of the
light front (Karmanov, Fuda).

Fuda operator F(R) changes orientation of light front

F(R) = U(R™*,0)Us(R,0) Rz = i

If U(R) exists F(R) is an S-matrix preserving unitary
transformation.



Bakamjian-Thomas solution (LF QM)

The light-front spin (sf) and dynamical angular
momentum components (J )are related by

1.1
I = 5 [5(PT =P )(2xEL)—(2xPL)K +PLsi+ Msy) ]

Require in addition [V, sf] = 0 (i.e. the spectrum of s is
independent of interactions, therefore choose sf = s¢).
For N > 2 violates U(A,a) — Ua(A, a) @ Ug(A, a) for
asymptotically separated subsystems A and B (needed
for localized tests of special relativity).

Cluster properties for (N > 3) can be recovered in a
recursive construction (Sokolov) that generates
frame-dependent many-body interactions that maintain
cluster properties in all inertial frames.



Sokolov construction (N = 3 example)

p— —
T
eI Al i (Z(A,-MP,;@I(AE.’,( —2@; P+ Vins /P+) X In A

Method preserves Poincaré invariance, cluster properties
and spectral condition (for suitable interactions).

e Preserves kinematic subgroup (for suitable interactions).

Aji kx generates frame-dependent many interactions.

Resulting spin is dynamical.



Scattering Theory - light-front dynamics
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Qp = lim eMpe Mt = |im /(Po+P Vs pe=i(Pi+Py); —
t—+o0 t—+oo

) ip—t  _ip—t )
lim e 2de 0z = Iim e
t—+oo t—+oo

((M24P2 Y—t_  _i(M24pP2 )_t_
i(M +PJ-0)2PSF de I(M°+PJ-0)2PSF _

. N2+ _i€M2 4+ . . / o /
lim eM e Mt — |im M peiMt
t'—4oo t'—+oco



Electron scattering - current matrix elements

e For space-like momentum transfers all matrix elements
of a conserved covariant current can be constructed from
matrix elements of /7(0) in a frame with momentum
transfer along the z-axis (Drell-Yan-West frame).

e These matrix elements are light-front boost invariant
(P" =Nwp, P =NAwp')

((m,s)p', 1|17 (0)|(m, $)B, 1) =

((m, s)B", W/ |17(0)|(m, 5)B, ) =

{(m, )/ |[1(0)[(m, s)p)



Remarks - observations on currents

e More generally, all components of the operator /#(0) can
be expressed in terms of /7(0) and the Poincaré
generators.

e For one-body currents the momentum transferred to the
target is the same as the momentum transferred to a
constituent particle in all frames related by light-front
boosts. (only form where this is true!)

e Dynamical constraints imply impulse current operators
violate Lorentz covariance.



Light-Front quantum field theory

Free fields

Pxa(p) + e""'xa*(p))

1 d
)= (2ﬁ)3/2 / \/2w:7(p) (e

Change variables p — p:




Fields restricted to the light-front are irreducible!

e Fourier transform of field restricted to x+ = 0:

p(xT =0,pt,pL) =

]. _ ,'(X PJr X - ) —
W dx dXJ_e 2 LPL ¢(0, X ,XJ_) =
T

e(pﬂ\/ga(p*,m +0(—p"),f _2p+a*<—p+,m>

e Possible to determine both a(p), and af(p) without
constructing conjugate momentum or going off of the
light front.

e Canonical case requires 7(x,t = 0) = —i[H, ¢(x, t = 0)]
which involves the dynamics.



Creation and annihilation operators
in terms of fields on the light front:

a(p) = \/?9(p+)<25(><+ =0,p",pL)

' (B) = \/ 2 0(p Yol = 0,—p" py)

e This means that if A satisfies

[¢(xT =0,%),A] =0 — A = constant




Field dynamics - naive expectation

e Noether’s theorem on a light front gives expressions for
all ten Poincaré generators in terms of fields restricted
to the light front.

e lIrreducibility of fields on the light front suggests that all
of the generators can be expressed in terms of the
irreducible Fock algebra restricted to a light front.

e Using Noether’s theorem to compute the generators for
a scalar field gives



Pt =4 / g : 2000 90(x)
xt=0

Ox— Ox~
a0
poaf w000,
e ) o0,
oo B2
e o B0

i . 00(x) , i00(x)  _06(x),
F —2/X+:0dx. e (2x ot "X o ):



Observations

The expressions for K3 and the dynamical generators
(P~, F', F?) have 0/0x™" derivatives that are normal to
the light front.

These expressions contain no dynamical information!
They are independent of both the mass (m?) and the
interaction (V/(¢(x)).

These observations are related to the characteristic
surface problem, where the operators that generate
transformations normal to the light front are not
derivable from fields restricted to the light front.

Additional information is required to ensure that the
resulting theory is equivalent to a canonical field theory
with a given mass and interaction!



Recover the desired theory

e Integrate x~ by parts in the dynamical generators:

. P 08(x)  BPo(x)
K ——4/X+:0dx.¢(x)( e it e R

- o oy 0700
P~ = _4/X+de'¢(x)0x—0x+ .

i ~ . i 02¢(X) - 62¢(X) J09(x) .
F=- /x+:o d%: p{x)(2x Ox—0x™* X Ox—0xi  Oxi ):

e Use the field equation to express gﬁ’ﬁéﬁ in terms of
quantities in the irreducible light-front algebra.
9%¢(x)
Ix—xt —Vio(x) + m*é(x) + V(4(x))
e This selects the mass and interaction.

e The dynamical generators are now expressed in terms of
the irreducible algebra of fields on the light front.




Consequences of the spectral condition (P > 0)

Pt kinematic =
Pt=) Pr=0 Pf=0

Interactions preserve kinematic subgroup =
[V,Pt] =0
Translational invariance of vacuum =-
P*|0) =0 P10y =0
PtV|0) = VPT|0) =0
Insert a complete set of eigenstates of P*
V|0) = [0){0[V']0) = [0)

The light-front Fock vacuum is a normalizable
translationally invariant eigenstate of both the free and
interacting theory.



Free field comments

e Solving the mass m field equations using (1) irreducible
light-front algebra and (2) the free Fock vacuum gives
the correct free field Wightman functions.

e The Wightman functions are moments of the vacuum
generating functional.

e This means that solving the field equations using the
kinematic vacuum generates the physical (mass m)
vacuum.



Is the vacuum trivial?

e The pure creation terms in the interactions (after normal
ordering) are responsible for changing the vacuum.

e For a ¢*(x) interaction the pure creation part of the
light-front interaction has the structure:

A(pt)s(pT)dpt
/ (’zpl)(fn)&p [T dpisdeis(> " pin)s(> ¢ —1)x
al(&1pT,pur1)al(&p™,pi2)al (&3pT, pus)al(Cap™, p1a)

e The problem is that while %

pt # 0, it is both singular and not well defined for
+
pt =0.

vanishes for



Zero modes

Noether’s theorem on the light front gives Poincaré
generators with no dynamical information.

Dynamics must be put in by hand to be consistent with
canonical field theory.

Defining non-trivial theories require both field equations
and a renormalization prescription to define local
operator products in generators.

pT = 0 gets mapped into p' = —oc0 on changing light
front orientation.

Rotational covariance relates |p| — oo divergences with
p™ — 0 divergences. (see talk by Beuf)

For light-front representations this may require
p" = 0-modes to renormalize the theory and maintain
equivalence with the renormalized canonical theory.



Additional consequences of PT > 0: Let Q be a charge by integrating a
not-necessarily conserved current over the light front.

e P kinematic, interactions preserve kinematic subgroup
P*=>"P'=0 P'=0 [QP]=0
e Translational invariance of vacuum
P*0) =0 P*Q|0) = QPT|0) =0
o Insert a complete set of eigenstates of P+
Q[0) = [0)(0[Q|0) = <[0)

e The light-front Fock vacuum is necessarily an eigenstate of Q.

e Vacuum contains no information without adding dynamical
information - Spontaneous symmetry breaking can be recovered by
solving the dynamics with an explicit symmetry breaking term
(Beane) and letting the symmetry breaking term — 0. This
generates the physical vacuum.



Summary of properties

Largest kinematic subgroup.

3-Parameter subgroups of kinematic boosts and
translations.

Light-front boosts have no Wigner rotations.
Angular momentum dynamical.

Orbital angular momentum dynamical.

[J1, Mo] #0

Cluster properties of U(A, a) — spin dynamical.

Adding angular only makes sense asymptotically with
cluster properties.



Frame-independent impulse approximations.

Rest frame defined dynamically.

Irreducibility of fields on the light front.

Dynamical vacuum = Fock vacuum (on irreducible
light-front algebra).

Equivalent to other forms of dynamics.

Characteristic surfaces - self adjoint P~ defines dynamics
- Noether’s theorem - requires additional dynamical
information.

Trivial vacuum plus dynamical information generates the
physical vacuum (7).



Two-body scattering (LF QM)

M = \/m% + k2 + 2mpeq Vin + \/m% + k% + 2mreq Vin

<(k,aj,)|5,’ :ulv Ilv 5/| V,m|(k,j)|5, 22 Ia 5> =
816uud(P" = PY(K', 1, s'|| Vi, Ik, 1)

The invariance principle gives, since M = M(H,,):

<(k/7j)//75/|SeXp’(k7.j)l75> =
<(k/7.j)l/75/’Q+(Hnra HOnr)QT_(Hnra HOnr)|(kaj)/75> =
(K )14 (M, Mo)QT (M, Mo)|(k, )1, )

Non-relativistic interactions fit to experiment can be
reinterpreted as light-front interactions fit to same data.



e For the free field solving gives the field ¢(x) with x™ = 0.

e The role of the field equations can be seen for the case
of a free scalar field of mass m. The light-front limit of
the two-point Wightman function is (z = x — y)

. _ie(z_)é(zi) B m Ki(my/22).

(016 (x)é(y)]0) 4r a2, [z

while a direct calculation using fields restricted to the
light front gives

(0lp(x)o(y)[0) =
1 0(q*)dg*dq. —i% g, 2,
227 )3 / a o

which knows nothing about the mass or dynamics (recall
that the dynamics had to be put in “by hand”.)



