Minkowski space approach to self-energies and scale invariance

Tobias Frederico
Instituto Tecnológico de Aeronáutica
São José dos Campos - Brazil
tobias@ita.br

LC2019 - QCD on the light cone: from hadrons to heavy ions 16-20 September 2019
Ecole Polytechnique, Palaiseau, France

OUTLINE

> Motivation
$>$ Schwinger-Dyson equation in Minkowski space - QED-like theory in Rainbow ladder approx.
> Un-Wick rotation of the SD equations \& comparison of results
> Miransky scaling and cconsistence with the integral representation
$>$ Scaling properties of the Fermion-boson model and solution of the UV equations
> Conclusion and perspectives

Motivation

Form-factors, DVCS in ERBL - DGLAP regions

Fragmentation function

Dressing quarks

QCD has dynamical chiral symmetry breaking, pions (Goldstone bosons)...

Fig. 2 The Dyson-Schwinger equation for the quark. The solid blobs denote dressed propagators and vertices

Solve Dyson-Schwinger equation in Minkowski space!
QED-Like bare vertex, bare photon...
Sauli, Few-Body Systems 39, 45-99 (2006) (integral representation)

DS Rainbow ladder QED-like theory

In coll. with Dyana Duarte, Emanuel Ydrefors, Wayne de Paula, Shaoyang Ji, Pieter Maris
$>$ Bare massive vector boson (arbitrary gauge)
> Bare vertex
> Pauli-Villars regulators
> Integral representation: Kallén-Lehmann Rep., Nakanishi Int Rep

$$
S_{f}(k)=\frac{1}{\not \nless-\bar{m}_{0}+\not \not / A_{f}\left(k^{2}\right)-B_{f}\left(k^{2}\right)+i \epsilon}
$$

$$
\begin{aligned}
\not \nLeftarrow A_{f}\left(k^{2}\right)-B_{f}\left(k^{2}\right) & =i g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\gamma_{\mu} S(k-q) \gamma_{\nu}}{q^{2}-m_{\sigma}^{2}+\imath \epsilon}\left[g^{\mu \nu}-\frac{(1-\xi) q^{\mu} q^{\nu}}{q^{2}-\xi m_{\sigma}^{2}+\imath \epsilon}\right] \\
& -i g^{2} \int \frac{d^{4} q}{(2 \pi)^{4}} \frac{\gamma_{\mu} S(k-q) \gamma_{\nu}}{q^{2}-\Lambda^{2}+\imath \epsilon}\left[g^{\mu \nu}-\frac{(1-\xi) q^{\mu} q^{\nu}}{q^{2}-\xi \Lambda^{2}+\imath \epsilon}\right]
\end{aligned}
$$

$$
\xi=0(\text { Landau Gauge }) \& \xi=1 \text { (Feynman Gauge })
$$

Main Tool: Nakanishi Integral Representation (NIR)

'Parametric representation for any Feynman diagram for interacting bosons, with a denominator carrying the overall analytical behavior in Minkowski space" [Nakanishi PR130(1963)1230]

$$
S_{f}(k)=\frac{1}{\not \nless-\bar{m}_{0}+\not \not k A_{f}\left(k^{2}\right)-B_{f}\left(k^{2}\right)+i \epsilon}
$$

$$
\begin{aligned}
& A_{f}\left(k^{2}\right)=\int_{0}^{\infty} d \gamma \frac{\rho_{A}(\gamma)}{k^{2}-\gamma+i \epsilon} \quad B_{f}\left(k^{2}\right)=\int_{0}^{\infty} d \gamma \frac{\rho_{B}(\gamma)}{k^{2}-\gamma+i \epsilon} \\
& S_{f}=R \frac{\not k+\bar{m}_{0}}{k^{2}-\bar{m}_{0}^{2}+i \epsilon}+\not k \int_{0}^{\infty} d \gamma \frac{\rho_{v}(\gamma)}{k^{2}-\gamma+i \epsilon}+\int_{0}^{\infty} d \gamma \frac{\rho_{s}(\gamma)}{k^{2}-\gamma+i \epsilon} \\
& \text { physical mass }
\end{aligned}
$$

- Note: Wick-rotation is the exact analytical continuation of the Minkowski space Nakanishi representation (Källen-Lehman): explore the complex plane!
※METHOD TO SOLVE IN MINKOWSKI SPACE
\checkmark Connection formulas for the $\rho^{\prime} s$: propagator \& self-energy \checkmark Int Rep in the SD eq \rightarrow Feynman parametrization...

Uniqueness of the weight functions....

$$
\begin{aligned}
\rho_{v}(\gamma) & =-2 \frac{f_{A}(\gamma)}{d(\gamma)}\left[\gamma \rho_{A}(\gamma) f_{A}(\gamma)-\rho_{B}(\gamma) f_{B}(\gamma)\right] \\
& +\frac{\rho_{A}(\gamma)}{d(\gamma)}\left[\gamma f_{A}^{2}(\gamma)-\pi^{2} \gamma \rho_{A}^{2}(\gamma)-f_{B}^{2}(\gamma)+\pi^{2} \rho_{B}^{2}(\gamma)\right]
\end{aligned}
$$

$$
d(\gamma)=\left[\gamma f_{A}^{2}(\gamma)-\pi^{2} \gamma \rho_{A}^{2}(\gamma)-f_{B}^{2}(\gamma)+\pi^{2} \rho_{B}^{2}(\gamma)\right]^{2}+4 \pi^{2}\left[\gamma \rho_{A}(\gamma) f_{A}(\gamma)-\rho_{B}(\gamma) f_{B}(\gamma)\right]
$$

$$
f_{A}(\gamma)=1+P . \int_{\gamma_{A}^{\text {thres }}}^{\infty} \frac{\rho_{A}\left(\gamma^{\prime}\right)}{k^{2}-\gamma^{\prime}} \gamma^{\prime} \quad f_{B}(\gamma)=\bar{m}_{0}+P . \int_{\gamma_{B}^{\text {thres }}}^{\infty} \frac{\rho_{B}\left(\gamma^{\prime}\right)}{k^{2}-\gamma^{\prime}} d \gamma^{\prime}
$$

$$
\begin{array}{cc}
\rho_{A}(\gamma)=0 \text { for } \gamma<\gamma_{A}^{\text {thres }}=\left(\bar{m}_{0}+\sqrt{\xi} m_{\sigma}\right)^{2} \text { and } \rho_{B}(\gamma)=0 \text { for } \gamma<\gamma_{B}^{\text {thres }}=\left(\bar{m}_{0}+m_{\sigma}\right)^{2} \\
\text { physical mass (pole mass) } & 0 \leq \xi \leq 1
\end{array}
$$

on-mass-shell renormalization

$$
\bar{m}_{0}^{2} f_{A}^{2}\left(\bar{m}_{0}^{2}\right)-f_{B}^{2}\left(\bar{m}_{0}^{2}\right)=0
$$

$$
\begin{aligned}
\bar{m}_{0} f_{A}\left(\bar{m}_{0}^{2}\right)= & \bar{m}_{0}+\bar{m}_{0} P \int_{0}^{\infty} d \gamma \frac{\rho_{A}(\gamma)}{\bar{m}_{0}^{2}-\gamma} \\
& =f_{B}\left(m_{0}^{2}\right)=m_{0}+P \int_{0}^{\infty} d \gamma \frac{\rho_{B}(\gamma)}{\bar{m}_{0}^{2}-\gamma}
\end{aligned}
$$

Feynman gauge

$$
\begin{aligned}
\rho_{A}^{\xi=1}\left(k^{2}\right)= & R \mathcal{K}_{A}^{\xi=1}\left(k^{2}, \bar{m}_{0} ; m_{\sigma}^{2}\right) \\
& +\int_{0}^{\infty} d s \rho_{v}(s) \mathcal{K}_{A}^{\xi=1}\left(k^{2}, s ; m_{\sigma}^{2}\right) \\
& -\left[m_{\sigma} \rightarrow \Lambda\right]
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{K}_{A}^{\xi=1}\left(k^{2}, a^{2} ; m_{\sigma}^{2}\right)=-\frac{\alpha}{4 \pi} \frac{k^{2}-m_{\sigma}^{2}+a^{2}}{k^{4}} \\
& \quad \times \sqrt{\left(k^{2}-m_{\sigma}^{2}+a^{2}\right)^{2}-4 k^{2} a^{2}} \Theta\left[k^{2}-\left(m_{\sigma}+\sqrt{a^{2}}\right)^{2}\right]
\end{aligned}
$$

Feynman gauge

$$
\begin{aligned}
\rho_{B}^{\xi=1}\left(k^{2}\right)= & R \bar{m}_{0} \mathcal{K}_{B}^{\xi=1}\left(k^{2}, \bar{m}_{0} ; m_{\sigma}^{2}\right) \\
& +\int_{0}^{\infty} d s \rho_{s}(s) \mathcal{K}_{B}^{\xi=1}\left(k^{2}, s ; m_{\sigma}^{2}\right) \\
& -\left[m_{\sigma} \rightarrow \Lambda\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{K}_{B}^{\xi=1}\left(k^{2}, a^{2} ; m_{\sigma}^{2}\right)= & -\frac{\alpha}{4 \pi} \frac{4}{k^{2}} \sqrt{\left(k^{2}-m_{\sigma}^{2}+a^{2}\right)^{2}-4 k^{2} a^{2}} \\
& \times \Theta\left[k^{2}-\left(\sqrt{a^{2}}+\sqrt{m_{\sigma}^{2}}\right)^{2}\right]
\end{aligned}
$$

Dyson-Schwinger equation in Rainbow ladder truncation from Euclidean to Minkowski: Un-Wick rotating

 in coll. with Dyana Duarte, Emanuel Ydrefors, Wayne de Paula, Shaoyang Ji, Pieter Maris

$$
S^{-1}(p)=A\left(p^{2}\right) \not p-B\left(p^{2}\right)
$$

QED-like, Feynman Gauge, bare vertices, massive vector boson, Pauli-Villars regulator
Wick-rotated SD equation (Euclidean momentum)

$$
\begin{aligned}
B\left(p^{2}\right)= & m_{0}-\frac{2 g^{2}}{(2 \pi)^{3}} \int_{0}^{\infty} k^{3} d k \frac{4 B\left(k^{2}\right)}{k^{2} A^{2}\left(k^{2}\right)-B^{2}\left(k^{2}\right)} \\
& \times \int_{0}^{\pi} \sin ^{2} \theta d \theta \frac{\Lambda^{2}-\mu^{2}}{\left(q^{2}-\mu^{2}\right)\left(q^{2}-\Lambda^{2}\right)} \\
A\left(p^{2}\right)= & 1-\frac{2 g^{2}}{(2 \pi)^{3}} \int_{0}^{\infty} k^{3} d k \frac{A\left(k^{2}\right)}{k^{2} A^{2}\left(k^{2}\right)-B^{2}\left(k^{2}\right)} \\
& \times \int_{0}^{\pi} \sin ^{2} \theta d \theta \frac{2 k \cos \theta}{p} \frac{\Lambda^{2}-\mu^{2}}{\left(q^{2}-\mu^{2}\right)\left(q^{2}-\Lambda^{2}\right)}
\end{aligned}
$$

$$
\text { Un-Wick rotation: } p \rightarrow \mathrm{e}^{-i \delta} p, \quad k \rightarrow \mathrm{e}^{-i \delta} k, \quad d k \rightarrow \mathrm{e}^{-i \delta} d k
$$

$p_{\mathrm{E}}^{2} \rightarrow-p_{\mathrm{E}}^{2}=p^{2}, \quad k_{\mathrm{E}}^{2} \rightarrow-k_{\mathrm{E}}^{2}=k^{2} \quad k_{\mathrm{E}}^{3} d k_{\mathrm{E}} \rightarrow k_{\mathrm{E}}^{3} d k_{\mathrm{E}}=k^{3} d k$

$$
\theta=\pi / 2-\delta
$$

Euclidean $\theta=\pi / 2 \quad \square$ Minkowski $\theta=0$

Spectral representation of the self-energy

$$
\begin{aligned}
B\left(p^{2}\right) & =m_{0}+\int_{0}^{\infty} d s \frac{\rho_{B}(s)}{p^{2}-s+i \varepsilon} & \text { with } & \rho_{B}(s)=-\operatorname{Im}[B(s) / \pi] \\
A\left(p^{2}\right) & =1+\int_{0}^{\infty} d s \frac{\rho_{A}(s)}{p^{2}-s+i \varepsilon} & \text { with } & \rho_{A}(s)=-\operatorname{Im}[A(s) / \pi]
\end{aligned}
$$

Parameters: $m_{\sigma}=1, \Lambda=10, \alpha=0.5$ and $m_{0}=0.5 \Rightarrow \bar{m}_{0}=0.7586$

$$
M^{2}\left(p^{2}\right)=\frac{B^{2}\left(p^{2}\right)}{A^{2}\left(p^{2}\right)} \quad Z\left(p^{2}\right)=\frac{1}{A\left(p^{2}\right)}
$$

Propagator spectral densities

No violation of positivity (opposite sign in our definitions)
$>\Lambda \rightarrow$ infinite ...

Scale invariance \& breaking

$>$ scale invariance in UV \rightarrow strong coupling is broken
> Spontaneous Chiral symmetry breaking \& Miransky scaling, N.Cim. A90(1985)149 Kaplan,Lee,Son PRD80 (2009)12005
> Relativistic bound states within Bethe-Salpeter approach:
Fermions coupled to scalar, vector etc fields: coupling constant is dimensionless (QCD) instabilities above critical value associated with log-periodic solutions... Efimov physics!

Fermion-fermion: $\alpha_{c}=\frac{\pi}{4}$ (vector exchange) Mangin-Brinet, Carbonell, Karmanov, PRD64 (2001) 027701 \& 125005; Dorkin, Beyer, Semikh, Kaptari, Few Body Syst. 42 (2008) 1

Fermion-boson: Alvarenga Nogueira, Gherardi, TF, Salmè, Colasante, Pace PRD100 (2019)016021

Scale invariance \& breaking in DS equation

UV limit with $m_{\sigma}=m_{0}=0, A \rightarrow 1 \& B \rightarrow 0$
$B\left(p^{2}\right)=\frac{4 \alpha}{\pi^{2}} \int_{0}^{\infty} d k \frac{k^{3} B\left(k^{2}\right)}{k^{2} A^{2}\left(k^{2}\right)+B^{2}\left(k^{2}\right)} \int_{-1}^{1} \frac{d x \sqrt{1-x^{2}}}{k^{2}+p^{2}-2 k p x}$
invariant under a scale transformation: $p \rightarrow \lambda p \quad \& k \rightarrow \lambda k$
solution homogeneous function $B\left(k^{2}\right)=k^{\eta} \& \eta<0$

$$
\begin{aligned}
& \frac{(2 \alpha)^{-1}=((2+\eta) \pi)^{-1}-(\eta \pi)^{-1}}{} \\
& \eta=-1 \pm \sqrt{1-\frac{4 \alpha}{\pi}} \quad \alpha_{c}=\frac{\pi}{4}
\end{aligned}
$$

Miransky scaling, N.Cim. A90(1985)149 $\quad \alpha>\pi / 4$
unstable solution and necessity of a cut-off - log-periodic solutions (analogous to the Landau "fall-to-center" with -1/r2 potential in QM)

Consistence of the Wick-rotated solution and integral representation

$$
\begin{gathered}
\rho_{B}\left(k^{2}\right)=-\frac{\alpha}{4 \pi} \int_{0}^{k^{2}} d s \frac{4}{k^{2}} \sqrt{\left(k^{2}+s\right)^{2}-4 s k^{2}} \rho_{s}(s) \\
=-\frac{\alpha}{\pi} \int_{0}^{k^{2}} d s \frac{k^{2}-s}{s k^{2}} \rho_{B}(s), \\
\text { Scale invariance } \rightarrow \rho_{B}\left(k^{2}\right) \rightarrow k^{2 \eta^{\prime}} \\
1=-\frac{\alpha}{\pi}\left[\int_{0}^{1} d y y^{\eta^{\prime}-1}-\int_{0}^{1} d y y^{\left.\eta^{\prime}\right]}=-\frac{\alpha}{\pi} \frac{1}{\eta^{\prime}\left(\eta^{\prime}+1\right)}\right. \\
\eta^{\prime}=\frac{-1 \pm \sqrt{1-\frac{4 \alpha}{\pi}}}{2}=\frac{\eta}{2} \\
\\
B B\left(k^{2}\right)=\int_{0}^{\infty} d \gamma \frac{\rho_{B}(\gamma)}{k^{2}-\gamma+i \epsilon} \sim k^{\eta}
\end{gathered}
$$

Scale invariance \& breaking in DS equation

Table I: Values of the bare mass m_{0} and propagator residue R for different values of Λ and α, for $m_{\sigma}=1$ and $\bar{m}_{0}=0.7586$.

Λ	α	R	m_{0}
10^{1}	0.5	0.8835	0.5001
	$\alpha_{c}=\pi / 4$	0.8329	0.4067
	1.5	0.7372	0.2564
10^{2}	0.5	0.7808	0.3382
	$\alpha_{c}=\pi / 4$	0.7067	0.2371
	1.5	0.5873	0.1127
10^{3}	0.5	0.7137	0.2307
	$\alpha_{c}=\pi / 4$	0.6320	0.1358
	1.5	0.5106	3.2572×10^{-2}

$\operatorname{Re}\left[A\left(p^{2}\right)\right]$ (dashed), $\operatorname{Re}\left[B\left(p^{2}\right)\right]($ solid $), \operatorname{Im}\left[A\left(p^{2}\right)\right]$ (dot-dashed) and $\operatorname{Im}\left[B\left(p^{2}\right)\right]$ (dotted)

Scale invariance: Fermion-boson Bethe-Salpeter equation $1 / 2^{+}$ Alvarenga Nogueira et al. in preparation

$$
\begin{gathered}
\Phi^{\pi}\left(k, p, J_{z}\right)=\left[O_{1}(k) \phi_{1}(k, p)+O_{2}(k) \phi_{2}(k, p)\right] U\left(p, J_{z}\right) \\
O_{1}(k)=\mathbb{I}, \quad O_{2}(k)=\frac{\not k}{M}, \quad(\not p-M) U\left(p, J_{z}\right)=0
\end{gathered}
$$

Ladder BSE in Euclidean space - vector exchange

$$
\begin{gathered}
k_{4}=K \cos \varphi \quad \text { and } \quad k=K \sin \varphi \quad 0<\varphi<\pi \\
-5<\operatorname{Real}[\eta]<-4
\end{gathered}
$$

$\begin{aligned} & \text { Maximum value of } \\ & \text { the couplings product }\end{aligned} \alpha_{c}=1.18691 \ldots \quad \alpha^{V}=\frac{\lambda_{F}^{v} \lambda_{S}^{v}}{8 \pi}$

$$
\begin{array}{ll}
\phi_{1}\left(k_{4}, k\right)=K^{\eta+1} \quad \text { and } \quad \phi_{2}\left(k_{4}, k\right)=0 & \eta=-4.08918 \ldots \\
\phi_{1}\left(k_{4}, k\right)=0 \quad \text { and } \quad \phi_{2}\left(k_{4}, k\right)=K^{\eta} & \eta=-4.91082 \ldots
\end{array}
$$

Alvarenga Nogueira et al. in preparation

$$
\psi_{i}\left(\xi, \gamma ; \kappa^{2}\right)=i M \int_{-\infty}^{\infty} \frac{d k^{-}}{2 \pi} \phi_{i}(k, p) \sim \gamma^{1+\frac{\eta_{i}}{2}}
$$

Solution of the Ladder BS equation in Minkowski space via Nakanishi integral representation [PRD100 (2019)016021]

$$
\Phi(k, p)=\int_{-1}^{1} d z^{\prime} \int_{0}^{\infty} d \gamma^{\prime} \frac{g\left(\gamma^{\prime}, z^{\prime}\right)}{\left(\gamma^{\prime}+\kappa^{2}-k^{2}-p \cdot k z^{\prime}-i \epsilon\right)^{3}}
$$

Giovanni Salmè talk on Monday afternoon

Figure 5.4. The light-front wave function $\psi_{2}\left(\gamma, z_{0}=0\right)$ obtained from the solution of the original equation (5.8) as a function of γ (solid blue curve) and its product with the asymptotic limit found in the high momentum limit (dashed black curve).

Solution of the integral equations for the Nakanishi weight functions in UV limit

$$
g_{2}(\gamma, z)=\gamma^{r} f_{2}(z)
$$

$r=2+\frac{\eta}{2}$ with the constraint that $-1<r<0$

$$
\begin{aligned}
\lambda f(z) & =\frac{1+|r|}{2+4|r|} \int_{-1}^{1} d z^{\prime} f\left(z^{\prime}\right) \\
& \times\left\{\left[\frac{1+z}{1+z^{\prime}}\right]^{|r|} \theta\left(z^{\prime}-z\right)+\left[\frac{1-z}{1-z^{\prime}}\right]^{|r|}\left[1+\frac{4|r|}{\left(1-z^{\prime}\right)}\right] \theta\left(z-z^{\prime}\right)\right\}
\end{aligned}
$$

Conclusions and Perspectives

- Integral Representation to solve Dyson-Schwinger in diferente gauges;
- Un-Wick rotation: BSE and SD - promissing tool allied to Integral Representations;
- Consistence of the scale invariance analysis in Euclidean and self-energies NIR;
- Cosnsitence of the scale invariance analysis and BS solution for fermion-boson problem;
- Self-energies, quark-gluon vertex, ingredients from LQCD
- Confinement - How to include with Int. Representation?
- Apply to the study the structure: pion, kaon, D, B, rho..., and the nucleon
- Form-Factors, PDFs, TMDs, FRAGMENTATION FUNCTIONS...

THANK YOU!

LIA/CNRS - SUBATOMIC PHYSICS: FROM THEORY TO APPLICATIONS
IPNO (U.Van Kolck, Jaume Carbonell).... + Brazilian Institutions ...

