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Motivation

Form-factors, DVCS in ERBL – DGLAP regions

Fragmentation function



Dressing quarks
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Fig. 1 The quark-gluon vertex

p2 −p1

p3

enhancement occurs preferably at momenta of ∼ ΛQC D .
Furthermore, the vertex is enhanced when all momenta enter-
ing the vertex (see Fig. 1) tends to be parallel in pairs, solving
in this way the compromise that the momenta are restricted
to a region around ΛQC D . Within our solution for the quark-
gluon vertex, the dominant form factors are associated with
the tree level vertex γµ and the operator 2 pµ+qµ. The higher
rank tensor structures give sub-leading contributions to the
vertex.

In the current work, the vertex is written using the Ball-
Chiu construction. It is known that the Ball-Chiu vertex
has kinematical singularities for the Landau gauge [37] that
are associated to the transverse form factors (see definitions
below). These singularities can be avoided by considering
a different tensor basis for the full vertex as described, for
example, in [37]. However, the singularities are not associ-
ated to the longitudinal form factors and our calculation only
takes into account this class of form factors.

The paper is organised as follows. In Sect. 2 we intro-
duce the notation for the propagators, the Dyson–Schwinger
equations and the quark-gluon vertex. Moreover, we use a
Slavnov–Taylor identity to rewrite the vertex in terms of the
quark propagators functions and the quark-ghost kernel. The
parametrisation of the quark-ghost kernel is also discussed.
In Sect. 3 the scalar and vector components of the DSE in
Minkowski space are given, together with the corresponding
kernels. In Sect. 4 the DSE are rewritten in Euclidean space,
introduce the vertex ansatz and perform a scaling analysis of
the integral equations. In Sect. 5 we give the details of the
lattice data used in the current work for the various propa-
gators and on the functions that parametrise the lattice data.
The kernels for the Euclidean space DSE are discussed in
Sect. 6, together with the solutions for the vertex of the gap
equation. The quark-gluon vertex form factors are reported
in Sect. 7 for several kinematical configurations. Finally, on
Sect. 8 we summarise and conclude.

2 The quark gap equation and the quark-gluon vertex

In this section the notation used through out the article is
defined. In this first part of this work, the equations discussed
are written in Minkowski space with the diagonal metric g =
(1, −1, −1, −1). Let us follow the notation of [38] for the
quark-gluon vertex represented in Fig. 1 that considers all
momenta are incoming and, therefore, verify

p1 + p2 + p3 = 0. (1)

The one-particle irreducible Green’s function associated to
the vertex reads

Γ a
µ (p1, p2, p3) = g ta Γµ(p1, p2, p3), (2)

where g is the strong coupling constant and ta are the color
matrices in the fundamental representation.

The quark propagator is diagonal in color and its spin-
Lorentz structure is given by

S(p) = i
A(p2)/p − B(p2)

= i
A(p2)/p + B(p2)

A2(p2) p2 − B2(p2)

= i Z(p2)
/p + M(p2)

p2 − M2(p2)
, (3)

where Z(p2) = 1/A(p2) stands for the quark wave function
and M(p2) = B(p2)/A(p2) is the renormalisation group
invariant running quark mass.

The Dyson–Schwinger equation for the quark propagator,
also named the quark gap equation, is represented in Fig. 2
and can be written as

S−1(p) = −i Z2( /p− mbm) + Σ(p2), (4)

where Z2 is the quark renormalisation constant, mbm the bare
current quark mass and the quark self-energy is given by

Σ(p2) = Z1

∫
d4q

(2π)4

×Dab
µν(q) ( i g tbγν ) S(p− q) Γ a

µ (−p, p− q, q), (5)

where Z1 is a combination of several renormalisation con-
stants, Dab

µν(q) is the gluon propagator that, in the Landau
gauge, is given by

Dab
µν(q) = −i δab

(
gµν − qµqν

q2

)
D(q2) ; (6)

below both Dab
µν(q) and D(q2) will be referred to as the gluon

propagator.
A key ingredient in gap Eq. (4) is the quark-gluon vertex.

Indeed, it is only after knowing Γ a
µ or, equivalently Γµ, that

Z(p2) and M(p2) can be computed. The Lorentz structure

[
p

]−1 =
p

[ ]−1 +
p

q = p − k

k

Fig. 2 The Dyson–Schwinger equation for the quark. The solid blobs
denote dressed propagators and vertices

123Solve  Dyson-Schwinger equation in Minkowski space!

QED-Like bare vertex, bare photon…

Sauli, Few-Body Systems 39, 45–99 (2006) 
(integral representation)

QCD has dynamical chiral symmetry breaking, pions (Goldstone bosons)…



DS Rainbow ladder QED-like theory
In coll. with Dyana Duarte, Emanuel Ydrefors, Wayne de Paula, Shaoyang Ji, Pieter Maris

Ø Bare massive vector boson (arbitrary gauge) 
Ø Bare vertex 
Ø Pauli-Villars regulators
Ø Integral representation: Kallén-Lehmann Rep., Nakanishi Int Rep
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I. FERMION SELF ENERGY AND PROPAGATOR

We will write the densities related to self energy in terms of the spectral ones. The dressed fermion propagator is

Sf (k) =
1

/k �m0 + /kAf (k2)�Bf (k2) + i✏
(1)

and the self energy are given by the integral representation

Af

�
k2

�
=

ˆ 1

0
d�

⇢A (�)

k2 � � + i✏
(2)

Bf

�
k2

�
=

ˆ 1

0
d�

⇢B (�)

k2 � � + i✏
(3)

The integral representation of the fermion propagator is

Sf = R
/k +m0

k2 �m2
0 + i✏

+ /k

ˆ 1

0
d�

⇢v (�)

k2 � � + i✏

+

ˆ 1

0
d�

⇢s (�)

k2 � � + i✏
(4)

Using Sauli’s idea, writing S�1S = 1, we have

"
/k �m0 + /kAf

�
k2

�
�Bf

�
k2

�
+ i✏

# 
R

/k +m0

k2 �m2
0 + i✏

+ /k

ˆ 1

0
d�

⇢v (�)

k2 � � + i✏
+

ˆ 1

0
d�

⇢s (�)

k2 � � + i✏

�
= 1 (5)

A. Fermion Rainbow SD Equation

/kAf

�
k2

�
�Bf

�
k2

�
= ig2

ˆ
d4q

(2⇡)4
�µS(k � q)�⌫
q2 �m2

� + ı✏


gµ⌫ � (1� ⇠)qµq⌫

q2 � ⇠m2
� + ı✏

�

= ig2
ˆ

d4q

(2⇡)4
�µS(k � q)�⌫
q2 � ⇤2 + ı✏


gµ⌫ � (1� ⇠)qµq⌫

q2 � ⇠⇤2 + ı✏

�

The decomposed SD equations are given by

k2Af

�
k2

�
= ig2

ˆ
d4q

(2⇡)4

� (1 + ⇠)
�
k2 � k · q

�
� 2

(1�⇠)(q·k)2
q2�⇠m2

�+i✏

q2 �m2
� + i✏

⇥
"

R

(k � q)2 �m2
0 + i✏

+

ˆ 1

0
d�

⇢v (�)

(k � q)2 � � + i✏

#

� [m� ! ⇤] , (6)

and

Bf

�
k2

�
= �ig2

ˆ
d4q

(2⇡)4

4� (1�⇠)q2

q2�⇠m2
�+i✏

q2 �m2
� + i✏

"
Rm0

(k � q)2 �m2
0 + i✏

+

ˆ 1

0
d�

⇢s (�)

(k � q)2 � � + i✏

#
� [m� ! ⇤] (7)
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-

⇠ = 0 (Landau Gauge)& ⇠ = 1 (Feynman Gauge)
<latexit sha1_base64="rPBjJyXysqyWqJlfSWHvs2p8Fz0="></latexit>
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“Parametric representation for any Feynman diagram for interacting bosons, 
with a denominator carrying the overall analytical behavior in Minkowski space” 

[Nakanishi PR130(1963)1230]

Main Tool: Nakanishi Integral Representation (NIR) 1
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I. FERMION SELF ENERGY AND PROPAGATOR

We will write the densities related to self energy in terms of the spectral ones. The dressed fermion propagator is

Sf (k) =
1

/k �m0 + /kAf (k2)�Bf (k2) + i✏
(1)

and the self energy are given by the integral representation
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The integral representation of the fermion propagator is
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Using Sauli’s idea, writing S�1S = 1, we have
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A. Fermion Rainbow SD Equation
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The decomposed SD equations are given by
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(2⇡)4
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k2 � k · q

�
� 2

(1�⇠)(q·k)2
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�+i✏
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� + i✏
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"

R

(k � q)2 �m2
0 + i✏

+

ˆ 1

0
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⇢v (�)

(k � q)2 � � + i✏

#

� [m� ! ⇤] , (6)

and

Bf

�
k2

�
= �ig2

ˆ
d4q

(2⇡)4

4� (1�⇠)q2

q2�⇠m2
�+i✏
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+
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#
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• Note: Wick-rotation is the exact analytical continuation of the 
Minkowski space Nakanishi representation (Källen-Lehman): 

explore the complex plane!

physical mass 
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II. FINAL EXPRESSIONS

From expression for Af

�
k2

�
, collecting the results for I1, I2 and I3 we obtain, after using the unicity

⇢A (�) = �R
⇥
KA

1 (m0,m�, �)�KA
2 (m0,m�, �)

⇤
�
ˆ 1

0
d�0⇢v (�

0
)KA

1 (�0,m�, �)

+

ˆ 1

0
d�0⇢v (�

0
)KA

2 (�0,m�, �)� [m� ! ⇤] (35)

with ⇢A (�) = 0 for � < �thres
A =

�
m0 +

p
⇠m�

�2
and ⇢B (�) = 0 for � < �thres

B = (m0 +m�)
2
. The kernel functions

are defined by

KA
1 (a,m�, �) =

2g2⇠

(4⇡)2

⇥

h
� � (a+m�)

2
i

�

q
m4

� � 2m2
� (� + a2) + (� � a2)2 (36)

KA
2 (a,m�, �) =

g2⇠

(4⇡)2

ˆ 1

0
d↵1⇥

⇥
↵1 (1� ↵1) � � ↵1

�
a2 � ⇠m2

�

�
+ ⇠m2

�

⇤

⇥ ⇥
⇥
m2

� (1� ↵1) + ↵1a
2 � ↵1 (1� ↵1) �

⇤
(37)

*****

Using again the unicity, given the definition of Bf

�
k2

�
we obtain

⇢B (�) = �g2Rm0

(4⇡)2
⇥
KB

1 (m0,m�, �) +KB
2 (m0,m�, �)

⇤
� g2

(4⇡)2

ˆ 1

0
d�0⇢s (�

0
)KB

2 (�0,m�, �)

� g2

(4⇡)2

ˆ 1

0
d�0⇢s (�

0
)KB

1 (�0,m�, �)� [m� ! ⇤] .

The kernel functions are defined by

KB
1 (a,m�, �) = (3 + ⇠)

⇥

h
� � (a+m�)

2
i

�

q
a4 � 2a2 (� +m2

�) + (� �m2
�)

2

KB
2 (a,m�, �) = ⇠

ˆ 1

0
d↵1⇥

⇥
� (1� ↵1)↵1 � ↵1

�
a2 � ⇠m2

�

�
� ⇠m2

�

⇤

⇥ ⇥
⇥
m2

� (1� ↵1)� � (1� ↵1)↵1 + ↵1a
2
⇤

(38)

*****It is important to note that the inhomogeneous term

3g2R (1� ⇠)

8(4⇡)2
+ 2 (1� ⇠)

ˆ 1

0
d�0⇢v (�

0
)

3g2

8(4⇡)2

is cancelled when we subtract the Pauli-Villars contribution. For this reason we do not show it in the expression of

⇢A!

Connection formulas:

⇢v (�) = �2
fA (�)

d (�)
[�⇢A (�) fA (�)� ⇢B (�) fB (�)]

+
⇢A (�)

d (�)

⇥
� f2

A (�)� ⇡2�⇢2A (�)� f2
B (�) + ⇡2⇢2B (�)

⇤
(39)

⇢s (�) = �2
fB (�)

d (�)
[�⇢A (�) fA (�)� ⇢B (�) fB (�)] ,

+
⇢B (�)

d (�)

⇥
� f2

A (�)� ⇡2�⇢2A (�)� f2
B (�) + ⇡2⇢2B (�)

⇤
(40)

with

d (�) =
⇥
� f2

A (�)� ⇡2�⇢2A (�)� f2
B (�) + ⇡2⇢2B (�)

⇤2
+ 4⇡2

[�⇢A (�) fA (�)� ⇢B (�) fB (�)] (41)

⇢0s
<latexit sha1_base64="nON8gPEuRHu6bG4F0ghKpIOq6Fg=">AAAB7XicbVBNSwMxEJ3Ur1q/qh69BIvoqeyqoMeiF48V7Ae0S8mm2TY2myxJVihL/4MXD4p49f9489+YtnvQ1gcDj/dmmJkXJoIb63nfqLCyura+UdwsbW3v7O6V9w+aRqWasgZVQul2SAwTXLKG5VawdqIZiUPBWuHoduq3npg2XMkHO05YEJOB5BGnxDqp2dVDdWp65YpX9WbAy8TPSQVy1Hvlr25f0TRm0lJBjOn4XmKDjGjLqWCTUjc1LCF0RAas46gkMTNBNrt2gk+c0seR0q6kxTP190RGYmPGceg6Y2KHZtGbiv95ndRG10HGZZJaJul8UZQKbBWevo77XDNqxdgRQjV3t2I6JJpQ6wIquRD8xZeXSfO86l9UvfvLSu0mj6MIR3AMZ+DDFdTgDurQAAqP8Ayv8IYUekHv6GPeWkD5zCH8Afr8AVcUjvc=</latexit>
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II. FINAL EXPRESSIONS

From expression for Af

�
k2

�
, collecting the results for I1, I2 and I3 we obtain, after using the unicity

⇢A (�) = �R
⇥
KA

1 (m0,m�, �)�KA
2 (m0,m�, �)

⇤
�
ˆ 1

0
d�0⇢v (�

0
)KA

1 (�0,m�, �)

+

ˆ 1

0
d�0⇢v (�

0
)KA

2 (�0,m�, �)� [m� ! ⇤] (35)

with ⇢A (�) = 0 for � < �thres
A =

�
m0 +

p
⇠m�

�2
and ⇢B (�) = 0 for � < �thres

B = (m0 +m�)
2
. The kernel functions

are defined by

KA
1 (a,m�, �) =

2g2⇠

(4⇡)2

⇥

h
� � (a+m�)

2
i

�

q
m4

� � 2m2
� (� + a2) + (� � a2)2 (36)
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2 (a,m�, �) =

g2⇠

(4⇡)2
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0
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⇥
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�
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+ ⇠m2

�

⇤

⇥ ⇥
⇥
m2

� (1� ↵1) + ↵1a
2 � ↵1 (1� ↵1) �

⇤
(37)

*****

Using again the unicity, given the definition of Bf

�
k2

�
we obtain

⇢B (�) = �g2Rm0

(4⇡)2
⇥
KB

1 (m0,m�, �) +KB
2 (m0,m�, �)

⇤
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(4⇡)2
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0
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0
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2
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is cancelled when we subtract the Pauli-Villars contribution. For this reason we do not show it in the expression of
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Connection formulas:
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+
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+
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with
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11

and also

fA (�) = 1 + P.

ˆ 1

�thres
A

⇢A (�0
)

k2 � �0 �
0

(42)

fB (�) = m0 + P.

ˆ 1

�thres
B

⇢B (�0
)

k2 � �0 d�
0 . (43)

The renormalization constant is given by

R�1
= 1 + 2m0P.

ˆ 1

�thres
B

⇢B (�0
)

�
m2

0 � �0
�2 d�

0 �m2
0⇡

2 d

d�
[⇢A (�)]�=m2
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� 2m2
0P.
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A
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�
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0 � �0
�2 d�

0
(44)

11

and also
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k2 � �0 �
0

(42)
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⇢B (�0
)

k2 � �0 d�
0 . (43)

The renormalization constant is given by

R�1
= 1 + 2m0P.

ˆ 1
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B

⇢B (�0
)

�
m2

0 � �0
�2 d�

0 �m2
0⇡

2 d

d�
[⇢A (�)]�=m2

0

� 2m2
0P.

ˆ 1

�thres
A

⇢A (�)
�
m2

0 � �0
�2 d�

0
(44)
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From expression for Af
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, collecting the results for I1, I2 and I3 we obtain, after using the unicity
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⇥
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*****It is important to note that the inhomogeneous term
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is cancelled when we subtract the Pauli-Villars contribution. For this reason we do not show it in the expression of
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2Department of Physics and Astronomy, Iowa State University, Ames, Iowa, U.S.A., 50011 .

INTRODUCTION

Dyson-Schwinger equations (DSE) are the equation of motion of a quantum
field theory, that constitute a tower of infinite coupled functional differential
equations. They are very useful, since they naturally sum infinitely many
diagrams and therefore automatically contain nonperturbative information.
Since a field theory is completely defined when all of its n-point Green’s
function are known, solving the DSE provides a nonperturbative solution of
the theory. There are many different applications of DSE, ranging from solid
state physics to strong interaction problems in quantum chromodynamics.
The first, most usual and explored approach in this sense is the formula-
tion of DSE in the Euclidean space, since it is the formulation used in lattice
gauge theory simulations and also numerical solutions. Another important
reason is that, due to asymptotic freedom, all results of QCD perturbation
theory are strictly valid only at spacelike-momenta [1], the only possibil-
ity for Euclidean formulation. System descriptions originally formulated in
Minkowski space, e.g., the Bethe-Salpeter (BS) equation for a relativistic
bound system has to deal with many difficulties due to its singular behavior.
Thence, Wick formulates the BS in Euclidean space, through a rotation in
the relative energy in complex plane, k0 ! ik4, leading to a well defined
integral equation, which can be solved by standard methods.
However, in recent years, many efforts have been developed in an attempt
to find solutions of Bethe-Salpeter [2, 3, 4] and DSE [5] directly in Minkowski
space, avoiding to look for solutions in the Euclidean space by exploiting a
Wick rotation, since the Euclidean BS amplitude does not allow to calcu-
late some observables, e.g. electromagnetic form factors. The integral pro-
viding the form factors contains singularities which are different from those
appearing in BS equation and whose positions depend on the momentum
transfer, invalidating the Wickrotation in the form factor integral. In terms of
the Euclidean amplitude, in this case the form factor can be obtained only
approximately, in the so called static approximation [6].
An important tool to deal with the formulation in Minkowski space is the
Integral Representation (IR) firstly purposed by Nakanishi in his seminal
paper [7]. In this work, our purpose is to use the IR to obtain a solution of
the Dyson-Schwinger equation directly in Minkowski space, and compare
with a solution in a rotated axis from the Euclidean axis, what we call “Un-
Wick rotation”. To this end we must find the relation between the fermion
propagator self energy and the spectral densities, together with the DSE in
the rainbow-approximation.

FERMION SELF-ENERGY AND PROPAGATOR

Starting from the dressed fermion propagator,

S f =
1

/k �m0 + /kA f (k2) � B f (k2) + i✏

where the self-energy is given by an IR

A f (k
2) =
Z 1

0
d�

⇢A(�)
k2 � � + i✏

and B f (k
2) =
Z 1

0
d�

⇢B(�)
k2 � � + i✏

The integral representation of the fermion propagator is

S f (k) = R
/k +m0

k2 �m0 + i✏
+ /k
Z 1

0
d�

⇢v(�)
k2 � � + i✏

+

Z 1

0
d�

⇢s(�)
k2 � � + i✏

The spectral densities ⇢v and ⇢s are written in terms of the self energy den-
sities through the trivial identity S�1

f S f = 1 [8],

h
/k �m0 + /kA f (k

2) � B f (k
2) + i✏

i "
R
/k +m0

k2 �m0 + e✏

+ /k
Z 1

0
d�

⇢v(�)
k2 � � + i✏

+

Z 1

0
d�

⇢s(�)
k2 � � + i✏

#
= 1

Here the physical mass m0 is an input, different from Ref. [8].

Direct Inversion
We start from the inverse propagator representation, separating real and
immaginary parts,

S f =
1

/k

1 + P.

R 1
0 d�⇢A(�)

k2�� � i⇡⇢A(�)
�
�m0 � P.

R 1
0 d�⇢B(�)

k2�� � i⇡⇢B(�) + i✏

where P. represents the Principal Value. Also using the standard represen-
tation S f (k) = /ksA(k2) + sB(k2), where

sA(k2) =
R
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+

Z 1

0
d�

⇢v(�)
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=
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k2
h
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+ i✏

sB(k2) =
Rm2

0
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0 + i✏

+

Z 1

0
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⇢s(�)
k2 � � + i✏

=
m0 + B f (k2)

k2
h
1 + A f (k2)

i2 �
h
m0 + B f (k2)

i2
+ i✏
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From these expressions we obtain, after some manipulations

⇢v(�) = �2
fA(�)
d(�)

⇥
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with
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and
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The renormalization constant is given by

R�1 = 1 +
Z 1
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A

d�
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FERMION DYSON SCHWINGER EQUATION

The DSE for the rainbow ladder approximation is

/kA(k2) � B(k2) = ig2
Z

d4q
(2⇡)4

�µS(k � q)�⌫
q2 �m2
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#

where we have used a Pauli-Villars regulator to cancel de logarithm diver-
gencies. Note that we may set ⇠ = 1 for Feynman gauge and ⇠ = 0 for
Landau gauge. This equation can be decomposed to obtain

k2A(k2) = ig2
Z

d4q
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⇥
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R
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and
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RESULTS FOR DENSITIES

Working with A(k2) and B(k2) we obtain, after rigorous a calculation,
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and
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�
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�
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�
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and also

KB
2,⇠(�,m

2
0; m2
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g2

2(4⇡)2
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�
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�

⇥
(
⇥(� �m2

0)
q
�2 � 2�(m2
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2
�) + (m2

0 � ⇠m2
� +m2

�)2

⇥
h
⇥[� � (m0 +m�)2] +⇥[(

p
� �m0)2 � ⇠m2

�]⇥[(m0 +m�)2 � �]
i

�⇥[� � (m0 +m�)2]
q
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In these equations, �thres
A = (m0 +

p
⇠m�)2, and this is the same support

of the integration overKB
2,⇠. It is explicitly dependent on the gauge choice,

that is given by the value of the parameter ⇠. It is important to mention
that, in addition to the conventional choices ⇠ = 0 and ⇠ = 1, correspon-
dent to Landau and Feynman gauges respectively, we can choose any ar-
bitrary gauge in the range 0  ⇠  1. ForKB

2,⇠ we have �thres
B = (m0+m�)2,

that is the same value of a bosonic problem.

FINAL REMARKS

I We study a way to solve the DSE in the rainbow ladder approximation
for massive gauge boson, written for the spectral densities in arbitrary
gauges with undressed gauge-boson-fermion vertex in the Minkowski
space, by using the Nakanishi Integral Representation.

I From now we were able to express the self-energy densities ⇢A and
⇢B in terms of the spectral densities ⇢v and ⇢s, for an arbitrary gauge
in the range 0  ⇠  1.

I An important preliminar result is that the support �thres
A,B are dependent

on the gauge choice through the value of the parameter ⇠.

I The next step is to start the numerical implementation of these equa-
tions, in order to compare our Minkowski results to the solution in a
rotated axis from the Euclidean axis, through a Un-Wick rotation [9].
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“Bethe–Salpeter bound-state structure in Minkowski space,” Physics Letters B,
vol. 759, pp. 131–137, 2016.
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on-mass-shell renormalization

3

which could be achieved by

⇢A(m
2
0) = ⇢B(m

2
0) = 0 , (26)

or by having �thres
A(B) � m2

0 such that

⇢A(�) = ⇢B(�) = 0 ,

for �  �thres
A(B). Then the argument of the delta vanishes:
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ˆ 1
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ˆ 1

0
d�

⇢B(�)

m2
0 � �

(30)

which implies that:
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and

fB(k
2) = m0 +m0

ˆ 1

0
d�

⇢A(�)

m2
0 � �

� (k2 �m2
0)P

ˆ 1

0
d�

⇢B(�)

(m2
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. (32)

Let us now study the limits:

lim
�!m2
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0

R
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�!m2
0

Re[D(�)]/fA(�) , (33)

and
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Re[D(�)]/fB(�) . (34)

Close to � � m2
0 and for m2

� 6= 0 we can write:
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◆
, (35)

and introducing (35) in either (33) or (34) we get the
residue as:

R�1 = 1 +

ˆ 1

�thres
A

d�
⇢A(�)

m2
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� 2m2
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Note that in the particular Landau gauge �thres
A = m2

0,
and m� = 0 one has to consider the contribution to the
residue from the derivative of ⇢2A(�) and ⇢2B(�) at the
physical mass.:

�R�1 =
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2
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d
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⇥
⇢2B(�)m
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2
A(�)
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and to be clear the derivatives are taken in the limit of
� �m2

0 ! 0+.

C. Checking inversion: space-like region

The two scalar functions of the fermion propagator in
the space-like region are given by:
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where

fA(B)(��) = 1 (m0) +

ˆ 1

0
d�0 ⇢A(B)(�

0)

�� � �0 . (40)

The equalities in equations (38) and (39) could be even-
tually checked to access the quality of the inversion pro-
cedure.

II. FERMION RAINBOW SD EQUATION

The Schwinger-Dyson equation for the rainbow ladder
is:
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physical mass (pole mass)

bare mass

in our calculations the pole mass is given
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B. Feynman Gauge

1. Equation for ⇢A
�
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:

With results (65) and (67) we can write, from (46)
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Taking the immaginary part of both sides and using the
results (65) and (67) we get
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The expression above was simplifying taking into ac-
count that
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2
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due to Pauli Villars subtraction, and the definition of
AF

�
k2

�
in (2) and (46) one may write

⇢⇠=1
A

�
k2� = RK⇠=1

A

�
k2,m0;m

2
�

�

+

ˆ 1

0

ds⇢v (s)K
⇠=1
A

�
k2, s;m2

�

�

� [m� ! ⇤] (74)
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Taking the immaginary part of both sides of Eq. above,
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C. Arbitrary ⇠�gauge
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Using the definitions (65), (67) and (71), and taking
the imaginary part of both sides, we obtain
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Feynman gauge
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Figure 1: Real and imaginary parts of the inverse propagator functions A (solid)
and B (dashed), at di↵erent angles �, obtained by un-Wick rotating the Euclidean
solution as function of pv at p4 = 0, corresponding to the spacelike p2 axis (left)
and as function of p4 at pv = 0, along a line in the complex p4e�i � plane (right);
� = ⇡/2 would be the timelike axis. On the right we also show our results of rotating
the magnitude of p from the spacelike region towards the timelike region, which are
indistinguishable at the scale shown. Parameters are m0 = 0.5, µ = 1.0, ⇤ = 10.0,
and ↵ = 0.5.

3.2 Rotating the spacelike region to the timelike region

Alternatively, we can rotate the DSE from the Euclidean spacelike axis towards the
timelike axis by applying the transformation

p ! e�i� p , k ! e�i� k , dk ! e�i� dk , (22)

on the magnitude of the (Euclidean) four-vectors, while continuing to use 4-dimensional
hyperspherical coordinates, as was done in e.g. Refs. [8, 9]. With this technique we
keep p and k real (and positive), and we retain the 4-dimensional symmetry. As long
as the contribution along the arc at k = 1 vanishes (and with the explicit PV regu-
larization it does), we can neglect the contribution along this arc, and keep only the
integration over k from 0 to 1.

In the limit of � = ⇡/2 this transformation becomes

p2E ! �p2E = p2 , k2E ! �k2E = k2 k3E dkE ! k3E dkE = k3 dk , (23)

and e↵ectively this gives us a the DSEs on the pure timelike axis with p2 � 0
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2 g2
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in coll. with Dyana Duarte, Emanuel Ydrefors, Wayne de Paula, Shaoyang Ji, Pieter Maris
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Figure 1: Real and imaginary parts of the inverse propagator functions A (solid)
and B (dashed), at di↵erent angles �, obtained by un-Wick rotating the Euclidean
solution as function of pv at p4 = 0, corresponding to the spacelike p2 axis (left)
and as function of p4 at pv = 0, along a line in the complex p4e�i � plane (right);
� = ⇡/2 would be the timelike axis. On the right we also show our results of rotating
the magnitude of p from the spacelike region towards the timelike region, which are
indistinguishable at the scale shown. Parameters are m0 = 0.5, µ = 1.0, ⇤ = 10.0,
and ↵ = 0.5.

3.2 Rotating the spacelike region to the timelike region

Alternatively, we can rotate the DSE from the Euclidean spacelike axis towards the
timelike axis by applying the transformation

p ! e�i� p , k ! e�i� k , dk ! e�i� dk , (22)

on the magnitude of the (Euclidean) four-vectors, while continuing to use 4-dimensional
hyperspherical coordinates, as was done in e.g. Refs. [8, 9]. With this technique we
keep p and k real (and positive), and we retain the 4-dimensional symmetry. As long
as the contribution along the arc at k = 1 vanishes (and with the explicit PV regu-
larization it does), we can neglect the contribution along this arc, and keep only the
integration over k from 0 to 1.

In the limit of � = ⇡/2 this transformation becomes

p2E ! �p2E = p2 , k2E ! �k2E = k2 k3E dkE ! k3E dkE = k3 dk , (23)

and e↵ectively this gives us a the DSEs on the pure timelike axis with p2 � 0
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Figure 1: Real and imaginary parts of the inverse propagator functions A (solid)
and B (dashed), at di↵erent angles �, obtained by un-Wick rotating the Euclidean
solution as function of pv at p4 = 0, corresponding to the spacelike p2 axis (left)
and as function of p4 at pv = 0, along a line in the complex p4e�i � plane (right);
� = ⇡/2 would be the timelike axis. On the right we also show our results of rotating
the magnitude of p from the spacelike region towards the timelike region, which are
indistinguishable at the scale shown. Parameters are m0 = 0.5, µ = 1.0, ⇤ = 10.0,
and ↵ = 0.5.

3.2 Rotating the spacelike region to the timelike region

Alternatively, we can rotate the DSE from the Euclidean spacelike axis towards the
timelike axis by applying the transformation

p ! e�i� p , k ! e�i� k , dk ! e�i� dk , (22)

on the magnitude of the (Euclidean) four-vectors, while continuing to use 4-dimensional
hyperspherical coordinates, as was done in e.g. Refs. [8, 9]. With this technique we
keep p and k real (and positive), and we retain the 4-dimensional symmetry. As long
as the contribution along the arc at k = 1 vanishes (and with the explicit PV regu-
larization it does), we can neglect the contribution along this arc, and keep only the
integration over k from 0 to 1.

In the limit of � = ⇡/2 this transformation becomes

p2E ! �p2E = p2 , k2E ! �k2E = k2 k3E dkE ! k3E dkE = k3 dk , (23)

and e↵ectively this gives us a the DSEs on the pure timelike axis with p2 � 0
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Note Eqs. (24) and (25) are for timelike momenta only, p2 � 0, k2 � 0, and q2 =
(p � k)2 � 0 – they are di↵erent from the DSEs in Minkowski metric, Eqs. (5) and
(6). (Again singularities under the integrals are specified by the i✏ prescription.)

For any 0 < � < ⇡/2, this method gives the DSE along a line from 0 to 1 in
the upper complex p2 plane, rather than on a slice of the upper complex momentum
plane. Furthermore, it remains an integral equation in one variable, rather than in
two variables as with the method described in the previous subsection. This method
is therefore numerically easier to implement, and leads to better numerical precision.

In the right panel of Fig. 1, we also include our results obtained with this method.
Not surprisingly, the results of the two methods are essentially indistinguishable, at
least at the scale shown. However, the method of rotating the magnitude of p is much
more accurate (for a similar numerical e↵ort) than the explicit un-Wick rotation
of the fourth component, because when we un-Wick rotate the fourth component,
we break the 4-dimensional symmetry by treating the fourth component and the 3-
vector components di↵erently. Furthermore, we solve the propagator functions A and
B as functions of two independent real variables, p4 and pv, for a given angle � (or
equivalently, as function of one complex variable p2 = p24e

i 2�+p2v), whereas if we rotate
the magnitude of p the functions A and B remain function of only one essentially real
variable. In particular, as � approaches ⇡/2, in the case of the un-Wick rotation we
solve the DSE in the entire upper p2 plane, whereas if we rotate the magnitude of p,
we solve the DSE along a line from 0 to 1 close to the timelike axis. Clearly, the
latter approach is more e�cient numerically.

4 Results for the self-energy in the timelike region
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Figure 2: Real and imaginary parts of the inverse propagator functions A (dashed)
and B (solid), at di↵erent angles ✓ close to the timelike axis. Both figures are with
m0 = 0.5 and PV mass ⇤ = 10; and exchange mass µ = 1.0 and ↵ = 0.5 (left) and
massless vector boson and ↵ = 0.1 (right).

In order to discuss our results as we approach the timelike region, it is more
convenient to use ✓ = ⇡/2 � �; with this notation the timelike axis corresponds to
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plane. Furthermore, it remains an integral equation in one variable, rather than in
two variables as with the method described in the previous subsection. This method
is therefore numerically easier to implement, and leads to better numerical precision.

In the right panel of Fig. 1, we also include our results obtained with this method.
Not surprisingly, the results of the two methods are essentially indistinguishable, at
least at the scale shown. However, the method of rotating the magnitude of p is much
more accurate (for a similar numerical e↵ort) than the explicit un-Wick rotation
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we break the 4-dimensional symmetry by treating the fourth component and the 3-
vector components di↵erently. Furthermore, we solve the propagator functions A and
B as functions of two independent real variables, p4 and pv, for a given angle � (or
equivalently, as function of one complex variable p2 = p24e

i 2�+p2v), whereas if we rotate
the magnitude of p the functions A and B remain function of only one essentially real
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complicated singularity instead of a simple mass-pole, at which point the inverse
propagator is zero, and a branch-cut starts along the timelike axis. The sign of the
imaginary part is a consequence of the i✏ prescription – or in the case of the un-Wick
rotation, of the direction of the rotation.

Due to the PV regularization, the (inverse) propagator has a second kink along
the timelike axis, located at (mphys + ⇤)2, beyond which the imaginary parts fall o↵
to zero, and the real parts of the (inverse) fermion propagator approach their bare
(tree-level) values, see Fig. 2.

4.2 Spectral representation of the self-energy

With PB regularization, the integral representation for the scalar and vector self-
energies can be written as

B(p2) = m0 +

Z 1

0
ds

⇢B(s)

p2 � s+ i"
with ⇢B(s) = �Im [B(s)/⇡] , (26)

A(p2) = 1 +

Z 1

0
ds

⇢A(s)

p2 � s+ i"
with ⇢A(s) = �Im [A(s)/⇡] , (27)

following the standard spectral representation of the propagators [25]. In principle,
the spectral functions ⇢A,B fully determine the scalar and vector self-energies, and
thus the propagator.
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Figure 4: Left: Approximate spectral functions ⇢A,B obtained at di↵erent angles ✓
close to the timelike axis for m0 = 0.5, µ = 1.0, ⇤ = 10.0, and ↵ = 0.5. Right:
Spacelike self-energies obtained from the approximate spectral functions, compared
to the Euclidean solution.

In Fig. 4 we show on the left approximations to the spectral functions ⇢A,B ob-
tained from the imaginary parts of A and B at di↵erent angles ✓ close to the timelike
axis. (Note that the angle ✓ is defined as the rotation angle for p0 or the magnitude
of p; in terms of the variable s used in the spectral representation, this corresponds to
an angle 2✓.) The right panel confirms that in the limit of ✓ ! 0, these approximate
spectral functions can indeed reproduce the Euclidean (spacelike) to high accuracy.
With a more careful analysis and using a Mellin transformation, we can use these ‘ap-
proximate spectral representations’ at nonzero values of ✓ to calculate the self-energies
in the entire slice of the upper complex p2 plane, bounded by the real spacelike axis
(negative p2) and the line p2 ei 2✓. More details will be presented in Ref. [26].
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III. SOME NUMERICAL RESULTS

Here we present some numerical results comparing
to the proceeding https://arxiv.org/pdf/1905.00703.pdf.
The main di↵erence is that in the proceeding we give the
renormalized mass m0 as an input. Using m� = 1,⇤ =
10,↵ = 0.5 and m0 = 0.5 to obtain m0 ' 0.7586.
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IV. MIRANSKY SCALING
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Table I: Values of the bare mass m0 and propagator residue R
for di↵erent values of ⇤ and ↵, for m� = 1 and m0 = 0.7586.

⇤ ↵ R m0

0.5 0.8835 0.5001
101 ↵c = ⇡/4 0.8329 0.4067

1.5 0.7372 0.2564
0.5 0.7808 0.3382

102 ↵c = ⇡/4 0.7067 0.2371
1.5 0.5873 0.1127
0.5 0.7137 0.2307

103 ↵c = ⇡/4 0.6320 0.1358
1.5 0.5106 3.2572⇥10�2

0.5 0.7137 0.2307
! 1 ↵c = ⇡/4 0.6319 0.1263

1.5 0.5106 1.948⇥10�2
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In m� = m0 = 0 limit and using ↵ = g2/(4⇡) one may
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No violation of positivity (opposite sign in our definitions)

Propagator spectral densities Space like self-energies

Ø L à infinite ...



Ø scale invariance in UVà strong coupling is broken Beyond non-relativistic physics

Ø Spontaneous Chiral symmetry breaking & Miransky scaling, N.Cim. A90(1985)149
Kaplan,Lee,Son PRD80 (2009)12005

Ø Relativistic bound states within Bethe-Salpeter approach:

Fermions coupled to scalar, vector etc fields: coupling constant is dimensionless (QCD) -
instabilities  above critical value associated with log-periodic solutions… Efimov physics!

Fermion-fermion:                   (vector exchange) Mangin-Brinet,  Carbonell, Karmanov, PRD64 
(2001) 027701 & 125005; Dorkin, Beyer, Semikh, Kaptari, Few Body Syst. 42 (2008) 1

Fermion-boson: Alvarenga Nogueira, Gherardi, TF, Salmè, Colasante, Pace 
PRD100 (2019)016021

Scale invariance & breaking
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In the UV limit with m� = m0 = 0, A ! 1 & B ! 0
(↵ = g2/(4⇡)) one may rewrite

B
�
p2
�

=
4↵
⇡2

ˆ 1

0

dk
k3B

�
k2

�

k2A2 (k2) +B2 (k2)

ˆ 1

�1

dx
p
1� x2

k2 + p2 � 2k p x
.

is invariant under the scale transformation
p ! � p & k ! � k.

Assuming now that B
�
k2E
�
can be represented by a

solution homogeneous function B
�
k2
�
= k⌘ & ⌘ < 0,

making k = p · y, and considering A ! 1 for large kE we
obtain

p⌘E =
4↵
⇡2

ˆ 1

0

dkE
(pE · y)3 (pE · y)⌘

(pE · y)2 + (pE · y)2⌘

⇥
ˆ 1

�1

dx
p
1� x2

(pE · y)2 + p2E � 2p2E · yx

1 =
4↵
⇡2

ˆ 1

0

dkE
pE · y3+⌘ · y⌘

p2E · y2 + p2⌘E · y2⌘

ˆ 1

�1

dx
p
1� x2

y2 + 1� 2yx
.

Manipulating,

1 =
4↵

⇡2

ˆ 1

0
dy

y3+⌘

y2

ˆ 1

�1

dx
p
1� x2

y2 + 1� 2yx

1 =
↵

⇡

ˆ 1

0
dy
�
y�1+⌘

� ⇥
1 + y2 �

��y2 � 1
��⇤

(2↵)�1 = ((2 + ⌘)⇡)�1 � (⌘⇡)�1 ,

where we assumed ⌘ < 0. Solving for ⌘ we obtain

⌘ = �1±
r

1� 4↵

⇡

⌘2 = �1�
r

1� 4↵

⇡

Therefore, the critical value of the coupling constant is
give by ↵c =

⇡
4

B ⇠ k�1±i
p

4↵
⇡ �1 =

1
k
exp

"
±i

r
4↵
⇡

� 1 ln (k)

#

=
1
k
sin

"r
4↵
⇡

� 1 ln

✓
k
k⇤

◆#
. (97)

The larger value of this argument is obtained whenq
4↵
⇡ � 1 ln (k) = ⇡, therefore,

k2 = e2⇡/
p

4↵
⇡ �1 (98)

and the maximum value of k2 happens when ↵ > ⇡/4.
For ⇢B we have, also in the m0 = m� = 0 limit of

⇢B
�
k2
E

�
= � ↵

4⇡

ˆ k2
E

0

ds
4
k2
E

q
(k2

E + s)2 � 4sk2
E⇢s (s)

= �↵
⇡

ˆ k2
E

0

ds
k2
E � s
s · k2

E

⇢B (s) , (99)

where we observe that for k2E ! 1 we have ⇢s (s) =
⇢B (s) /k2E . Changing the variables s = k2Ey and suppos-
ing ⇢B as a power law form such that ⇢B

�
k2E
�
! y⌘:

k2⌘E = �↵

⇡

ˆ 1

0
k2Edy

k2E � k2Ey

(k2Ey) · k2E
k2⌘E y⌘

1 = �↵

⇡

ˆ 1

0
dy y⌘�1 �

ˆ 1

0
dy y⌘

�

1 = �↵

⇡

1

⌘ (⌘ + 1)

Solving for ⌘ we obtain

⌘2 + ⌘ +
↵

⇡
= 0

⌘1 =
�1�

q
1� 4↵

⇡

2

⌘2 =
�1 +

q
1� 4↵

⇡

2
.

which leads to the same ↵c =
⇡
4 obtained for B

�
k2E
�
.

To verify the validity of this expressions we use

⇢B
�
k2
�
=
�
k2
�� 1±

p
1� 4↵

⇡
2 and back to the definition of

B
�
k2
�
we obtain, with ⇢B (�) ! �� and the change

� = k2y

B
�
k2
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=

ˆ 1

0
d�

⇢B (�)

k2 � � + i✏
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. (100)

Performing integral in y we obtain

B
�
k2� =

�⇡k1±
p

1� 4↵
⇡ (�1)�

1±
p

1� 4↵
⇡

2
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⇣

⇡
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1� 4↵

⇡

⌘ . (101)

We can also evaluate this expression for space-like mo-
menta:

B
�
k2 < 0

�
= �

ˆ 1

0
d�

⇢B (�)

k2 + �

= �k1±
p

1� 4↵
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dy
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,(102)

resulting in

B
�
k2 < 0

�
= �⇡k1±

p
1� 4↵

⇡ cos�1

 
⇡

2

r
1� 4↵

⇡

!
(103)

which is equivalent to the previous result obtained for
B
�
k2
�
.
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which is equivalent to the previous result obtained for
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We can also evaluate this expression for space-like mo-
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resulting in
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which is equivalent to the previous result obtained for
B
�
k2
�
.
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In the UV limit with m� = m0 = 0, A ! 1 & B ! 0
(↵ = g2/(4⇡)) one may rewrite

B
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p2
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=
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�1

dx
p
1� x2

k2 + p2 � 2k p x
.

is invariant under the scale transformation
p ! � p & k ! � k.

Assuming now that B
�
k2E
�
can be represented by a

solution homogeneous function B
�
k2
�
= k⌘ & ⌘ < 0,

making k = p · y, and considering A ! 1 for large kE we
obtain

p⌘E =
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⇡2
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⇥
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Manipulating,
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The larger value of this argument is obtained whenq
4↵
⇡ � 1 ln (k) = ⇡, therefore,

k2 = e2⇡/
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4↵
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and the maximum value of k2 happens when ↵ > ⇡/4.
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where we observe that for k2E ! 1 we have ⇢s (s) =
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⇡
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⇡
4 obtained for B
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which is equivalent to the previous result obtained for
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.
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k2 + p2 � 2k p x
.

is invariant under the scale transformation
p ! � p & k ! � k.

Assuming now that B
�
k2E
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can be represented by a

solution homogeneous function B
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k2
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= k⌘ & ⌘ < 0,

making k = p · y, and considering A ! 1 for large kE we
obtain
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where we assumed ⌘ < 0. Solving for ⌘ we obtain
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The larger value of this argument is obtained whenq
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⇡ � 1 ln (k) = ⇡, therefore,

k2 = e2⇡/
p

4↵
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where we observe that for k2E ! 1 we have ⇢s (s) =
⇢B (s) /k2E . Changing the variables s = k2Ey and suppos-
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which leads to the same ↵c =
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4 obtained for B

�
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�
.

To verify the validity of this expressions we use

⇢B
�
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⇡
2 and back to the definition of
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�
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�
we obtain, with ⇢B (�) ! �� and the change

� = k2y
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=
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k2 � � + i✏

= k2�
ˆ 1

0
dy

y�

1� y + i✏

= k1±
p

1� 4↵
⇡

ˆ 1

0
dy

y�
1±
p

1� 4↵
⇡

2

1� y + i✏
. (100)

Performing integral in y we obtain
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We can also evaluate this expression for space-like mo-
menta:
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resulting in
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which is equivalent to the previous result obtained for
B
�
k2
�
.
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In the UV limit with m� = m0 = 0, A ! 1 & B ! 0
(↵ = g2/(4⇡)) one may rewrite
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dx
p
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.

is invariant under the scale transformation
p ! � p & k ! � k.

Assuming now that B
�
k2E
�
can be represented by a

solution homogeneous function B
�
k2
�
= k⌘ & ⌘ < 0,

making k = p · y, and considering A ! 1 for large kE we
obtain

p⌘E =
4↵
⇡2

ˆ 1

0
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⇥
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dx
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pE · y3+⌘ · y⌘
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ˆ 1
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dx
p
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y2 + 1� 2yx
.

Manipulating,

1 =
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0
dy

y3+⌘

y2

ˆ 1
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dx
p
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(2↵)�1 = ((2 + ⌘)⇡)�1 � (⌘⇡)�1 ,

where we assumed ⌘ < 0. Solving for ⌘ we obtain

⌘ = �1±
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1� 4↵

⇡

⌘2 = �1�
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⇡
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The larger value of this argument is obtained whenq
4↵
⇡ � 1 ln (k) = ⇡, therefore,

k2 = e2⇡/
p

4↵
⇡ �1 (98)

and the maximum value of k2 happens when ↵ > ⇡/4.
For ⇢B we have, also in the m0 = m� = 0 limit of
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⇢B (s) , (99)

where we observe that for k2E ! 1 we have ⇢s (s) =
⇢B (s) /k2E . Changing the variables s = k2Ey and suppos-
ing ⇢B as a power law form such that ⇢B
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k2⌘E = �↵
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Solving for ⌘ we obtain
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.

which leads to the same ↵c =
⇡
4 obtained for B

�
k2E
�
.

To verify the validity of this expressions we use
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Performing integral in y we obtain
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We can also evaluate this expression for space-like mo-
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which is equivalent to the previous result obtained for
B
�
k2
�
.
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.

is invariant under the scale transformation
p ! � p & k ! � k.

Assuming now that B
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k2E
�
can be represented by a
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= k⌘ & ⌘ < 0,

making k = p · y, and considering A ! 1 for large kE we
obtain
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The larger value of this argument is obtained whenq
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⇡ � 1 ln (k) = ⇡, therefore,

k2 = e2⇡/
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and the maximum value of k2 happens when ↵ > ⇡/4.
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We can also evaluate this expression for space-like mo-
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Assuming now that B
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making k = p · y, and considering A ! 1 for large kE we
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The larger value of this argument is obtained whenq
4↵
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⇡
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= k⌘ & ⌘ < 0,
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where we assumed ⌘ < 0. Solving for ⌘ we obtain
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The larger value of this argument is obtained whenq
4↵
⇡ � 1 ln (k) = ⇡, therefore,

k2 = e2⇡/
p
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⇡ �1 (98)

and the maximum value of k2 happens when ↵ > ⇡/4.
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where we observe that for k2E ! 1 we have ⇢s (s) =
⇢B (s) /k2E . Changing the variables s = k2Ey and suppos-
ing ⇢B as a power law form such that
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4 obtained for B

�
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.

To verify the validity of this expressions we use
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which is equivalent to the previous result obtained for
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The larger value of this argument is obtained whenq
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solution homogeneous function B
�
k2
�
= k⌘ & ⌘ < 0,

making k = p · y, and considering A ! 1 for large kE we
obtain

p⌘E =
4↵
⇡2

ˆ 1

0

dkE
(pE · y)3 (pE · y)⌘

(pE · y)2 + (pE · y)2⌘

⇥
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�1

dx
p
1� x2

(pE · y)2 + p2E � 2p2E · yx

1 =
4↵
⇡2

ˆ 1

0

dkE
pE · y3+⌘ · y⌘

p2E · y2 + p2⌘E · y2⌘

ˆ 1

�1

dx
p
1� x2

y2 + 1� 2yx
.

Manipulating,

1 =
4↵

⇡2

ˆ 1

0
dy

y3+⌘

y2

ˆ 1

�1

dx
p
1� x2

y2 + 1� 2yx

1 =
↵

⇡

ˆ 1

0
dy
�
y�1+⌘

� ⇥
1 + y2 �

��y2 � 1
��⇤

(2↵)�1 = ((2 + ⌘)⇡)�1 � (⌘⇡)�1 ,

where we assumed ⌘ < 0. Solving for ⌘ we obtain

⌘ = �1±
r

1� 4↵

⇡

⌘2 = �1�
r

1� 4↵

⇡

Therefore, the critical value of the coupling constant is
give by ↵c =

⇡
4

B ⇠ k�1±i
p

4↵
⇡ �1 =

1
k
exp

"
±i

r
4↵
⇡

� 1 ln (k)

#

=
1
k
sin

"r
4↵
⇡

� 1 ln

✓
k
k⇤

◆#
. (97)

The larger value of this argument is obtained whenq
4↵
⇡ � 1 ln (k) = ⇡, therefore,

k2 = e2⇡/
p

4↵
⇡ �1 (98)

and the maximum value of k2 happens when ↵ > ⇡/4.
For ⇢B we have, also in the m0 = m� = 0 limit of
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�
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ds
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q
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0

ds
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s k2

⇢B (s) , (99)

where we observe that for k2E ! 1 we have ⇢s (s) =
⇢B (s) /k2E . Changing the variables s = k2Ey and suppos-
ing ⇢B as a power law form such that
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�
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0
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1 = �↵

⇡

ˆ 1

0
dy y⌘

0�1 �
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0
dy y⌘

0
�
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⇡

1

⌘0 (⌘0 + 1)

Solving for ⌘ we obtain

⌘
02 + ⌘0 +

↵

⇡
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�1±

q
1� 4↵

⇡

2
=

⌘

2
,

which leads to the same ↵c =
⇡
4 obtained for B

�
k2E
�
.

To verify the validity of this expressions we use
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�
k2
�
=
�
k2
�� 1±

p
1� 4↵

⇡
2 and back to the definition of

B
�
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�
we obtain, with ⇢B (�) ! �� and the change

� = k2y

B
�
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�

=

ˆ 1

0
d�
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0
dy

y�

1� y + i✏
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p
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⇡

ˆ 1

0
dy
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2

1� y + i✏
. (100)

Performing integral in y we obtain

B
�
k2� =

�⇡k1±
p

1� 4↵
⇡ (�1)�

1±
p

1� 4↵
⇡

2

cos
⇣

⇡
2

q
1� 4↵

⇡

⌘ . (101)

We can also evaluate this expression for space-like mo-
menta:

B
�
k2 < 0

�
= �

ˆ 1

0
d�

⇢B (�)

k2 + �

= �k1±
p

1� 4↵
⇡

ˆ 1

0
dy

y�
1±
p

1� 4↵
⇡

2

1 + y
,(102)

resulting in

B
�
k2 < 0

�
= �⇡k1±

p
1� 4↵

⇡ cos�1

 
⇡

2

r
1� 4↵

⇡

!
(103)

which is equivalent to the previous result obtained for
B
�
k2
�
.

Consistence of the Wick-rotated  solution and  integral representation 
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Table I: Values of the bare mass m0 and propagator residue R
for di↵erent values of ⇤ and ↵, for m� = 1 and m0 = 0.7586.

⇤ ↵ R m0

0.5 0.8835 0.5001
101 ↵c = ⇡/4 0.8329 0.4067

1.5 0.7372 0.2564
0.5 0.7808 0.3382

102 ↵c = ⇡/4 0.7067 0.2371
1.5 0.5873 0.1127
0.5 0.7137 0.2307

103 ↵c = ⇡/4 0.6320 0.1358
1.5 0.5106 3.2572⇥10�2

0.5 0.7137 0.2307
! 1 ↵c = ⇡/4 0.6319 0.1263

1.5 0.5106 1.948⇥10�2
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Figure 4: Left: ⇢A (dashed) and ⇢B (solid) when ⇤ ! 1, for ↵ = 0.5,⇡/4 and 1.5. Right: ⇢v (dashed) and ⇢s (solid) when
⇤ ! 1, for ↵ = 0.5,⇡/4 and 1.5.
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Figure 5: Left: Re[A(p2)] (dashed), Re[B(p2)] (solid), Im[A(p2)] (dot-dashed) and Im[B(p2)] (dotted) when ⇤ ! 1, for
↵ = 0.5,⇡/4 and 1.5. Right: Self Energy in Euclidean space when ⇤ ! 1, for ↵ = 0.5,⇡/4 and 1.5.
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4 M << m limit

The final coefficients in the limit M/m << 1 reads:

c(0)11 ! �k2 � k2
4, c(1)11 ! �k2 � k2

4 � ik4m 

k2
;

c(0)12 ! � 1

M

⇣
i k0

4(k
2 + k2

4) +m (k
02 + k

02
4 )

⌘
,

c(1)12 ! 1

M

✓
ik4 �m +

k2
4

k2
(ik4 �m )

◆
;

c(0)21 ! M [ik0
4 +m ] , c(1)21 = �M

k2
[ik4 �m ] ;

c(0)22 = �(k
02
4 + k

02) + ik0
4 m , c(1)22 = �1� k4

k2
(k4 + im ) .

(14)

The component �2 should go to zero for M ! 0 in order that one obtains a finite BS

amplitude, as the definitions below demand:

�⇡(k, p, Jz) =
h
O1(k) �1(k, p) +O2(k) �2(k, p)

i
U(p, Jz) , (15)

where �i are unknown scalar functions that depend upon the available momenta and are deter-

mined by solving the BSE. The operators Oi act on the spinor U (with normalization Ū U = 1)
and one has

O1(k) = I , O2(k) =
/k

M
, (/p�M) U(p, Jz) = 0 . (16)

However, the ratio �2/M could be finite. To examine this, possibility, let us check the consis-

tence of the couple set of equations for �1 and �2.

Suppose that one solves the integral equation for �1 not for M = 0 but in its vicinity,

namely M << m , and we solve the uncoupled equation for �1, assuming that �2/M ! 0.
The solution for �1, could be inserted in equation for �2, and due to the coupling coefficients

c(0),(1)21 / M , the inhomogeneous linear equation for �2 could be solved. The conclusion, would

be that �2 is indeed proportional to M , and then �2/M is finite. Furthermore, such behaviour

of �2/M produce a finite contribution to the integral equation for �1 considering the coupling

coefficient c(0),(1)12 / 1/M for M ! 0, and therefore c(0),(1)12 �2 would be finite, which is against

our initial supposition to disregard �2 to solve the uncoupled equation for �1. To avoid such

contradiction, the coupled set of equations for �1 and �2/M should be solved simultaneously

in the limit of M ! 0.
The naive assumption that �2 goes to zero faster than M is not acceptable, as we concluded

that �2/M is finite, and in this limit still one has to solve the coupled set of integral equations,

for �1 and �2/M . For the effect of comparing �1 and �2 the choice is to use
m 

M �2.

5 High momentum limit

5.1 With angular integration

The final equation in the limit where k, k4 >> µ,m ,m�,M reads

a = (k4 � k0
4)

2 + ~k2 + ~k02 + µ2

b = 2 |~k||~k0|. (17)
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5 High momentum limit

5.1 With angular integration

The final equation in the limit where k, k4 >> µ,m ,m�,M reads

a = (k4 � k0
4)

2 + ~k2 + ~k02 + µ2

b = 2 |~k||~k0|. (17)
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where now the new coefficients are independent of the masses and read:

c̄(0)11 = �k2 � k2
4,

c̄(1)11 = �k2 + k2
4

k2
;

c̄(0)12 = �ik0
4(k

2 + k2
4),

c̄(1)12 = ik4

✓
1 +

k2
4

k2

◆
;

c̄(0)21 = ik0
4,

c̄(1)21 = �i
k4
k2

;

c̄(0)22 = �k
02
4 � k

02,

c̄(1)22 = �k2 + k2
4

k2
.

(21)

We introduce the variables

k4 = K cos' and k = K sin' (22)

with 0 < ' < ⇡. Then

a = (k4 � k0
4)

2 + ~k2 + ~k02 = K2 +K 02 � 2KK 0 cos' cos'0

b = 2 |~k||~k0| = 2KK 0 sin' sin'0. (23)

and with the coefficients given by

c̄(0)11 = �k2 � k2
4 = �K2, c̄(1)11 = �k2 + k2

4

k2
= � csc2 ';

c̄(0)12 = �ik0
4(k

2 + k2
4) = �iK2K 0 cos'0, c̄(1)12 = ik4
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1 +

k2
4
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◆
= iK cos' csc2 '

c̄(0)21 = ik0
4 = iK 0 cos'0, c̄(1)21 = �i

k4
k2

= � i

K
cos' csc2 ';

c̄(0)22 = �k
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4 � k

02 = �K 02, c̄(1)22 = �1� k2
4

k2
= � 1

sin2 '
= � csc2 '.

(24)

and we make the ansatz:

�1(k4, k) = K⌘+1F1(')

sin2 '
and �2(k4, k) = K⌘F2(')

sin2 '
(25)

The integral equation becomes:

K⌘+7 F1(') = � ↵

(2⇡)2

Z 1

0

dK 0 K 0⌘+2

Z ⇡

0

d'0

sin2 '0

⇢
b
⇣
c̄(0)11 +

a

2
c̄(1)11

⌘
L� b2c̄(1)11

�
F1('

0)

+K 0�1


b
⇣
c̄(0)12 +

a

2
c̄(1)12

⌘
L� b2c̄(1)12

�
F2('

0)

�

K⌘+6 F2(') = � ↵
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Z 1
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dK 0 K 0⌘+1

Z ⇡
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d'0

sin2 '0

⇢
b
⇣
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2
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�
F2('

0)

+K 0

b
⇣
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0)

�
(26)
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in order that the above equation has solution the real part of ⌘ should be constrained to:

�1 < Real[⌘] + 4 < 0 with � 5 < Real[⌘] < �4 . (31)

For our analysis of the support it is important to observe the following limits for y ! 0 in the

non-diagonal part of the kernel of the equation for F1 and for the diagonal term of the kernel

in the equation for F2. In the first case the kernel for y ! 0 behaves as:

⇢
csc'

�
(1 + y2) cos'� 2y cos'0� L

y
� 4 cos' sin'0

�����
y!0

! �4 y sin2 ' sin 2'0 , (32)

and in the second case one has that:

⇢
� sin'

✓
2y2 + (1 + y2 � 2y cos' cos'0) csc2 '

◆
L

y
+ 4 sin'0

�����
y!0

! 4

3
y2 sin2 ' (sin(3'0)� 9 sin'0) . (33)

The support (31) is illustrated in Fig. 2 and further discussed in what follows.

The solutions of the coupled set of integral equations (30) for each value of ↵ is found with

F1(') = sin2 ' and F2(') = sin2 ' . (34)

The complete solutions take the form

�1(k4, k) = K⌘+1
and �2(k4, k) = 0 , (35)

with

↵1(⌘) = �⇡(3 + ⌘)(5 + ⌘)(7 + ⌘)

4(6 + ⌘)
, (36)

and

�1(k4, k) = 0 and �2(k4, k) = K⌘ , (37)

with

↵2(⌘) = �⇡(6 + ⌘)(4 + ⌘)(2 + ⌘)

4(3 + ⌘)
. (38)

The relation between the two couplings forms is

↵ = ↵1(�9� ⌘) = ↵2(⌘) . (39)

The solutions (35) and (37) were checked by solving the integral equations (30) numerically.

Coming close to the extremes of ⌘ the solution is more demanding numerically. It was checked

that the numerical for F1(') = sin2(') and F2(') = sin2(') the coupling terms are very close

to zero, giving trivially the same results if they were decoupled. It is important to note that

the relative normalization of the functions �1(k4, k) and �2(k4, k) are not fixed by the solution

of (30), as the contribution from the coupling terms in the integral equations simply vanishes,

as our numerical solution indicated. To illustrate the vanishing of the non-diagonal terms, we

introduce the following function:

H12(y,') =

Z ⇡

0

d'0 sin'0

csc'

�
(1 + y2) cos'� 2y cos'0� L

y
� 4 cos' sin'0

�
, (40)

which corresponds to the non-diagonal term in the equation for F1 for the integrand with

F2('0) = sin2 '0
. The plot is given in Fig. 1, where the results of the numerical integration via

the Mathematica code are shown to be compatible with zero.
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Figure 1: The function H12(y,') for 0 < ' < ⇡ and 0.1 < y < 10.

The maximum value of ↵c = 1.18691... is found for ↵1(⌘) at ⌘ = �4.08918..., and for ↵2(⌘)
at ⌘ = �4.91082.... The functions ↵i(⌘) are plotted in fig. 2, and one observes for a given value

of ↵ < ↵c two solutions for ⌘ are found, while at ↵c only one solution is found. For ↵i above the

maximum value the exponent ⌘ is complex, and the BS equation in Euclidean space presents a

pair of log-periodic solutions, which demands one condition to determine the solution uniquely.

Although, the plot has been done for a large region, the solution of the coupled set of integral

equations is given by the values of ⌘ in the intersection between the supports of ↵1 and ↵2 as

written in (31).
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Figure 2: ↵1 (left frame) and ↵2 (right frame) as a function of ⌘ from Eqs. (36) and (38),

respectively.

5.1.1 Transverse amplitude

The transverse amplitude defined by

'T
i (k?) =

Z
dk4dkzK

⌘ / k⌘i+2
? , (41)

which can be compared directly with the corresponding light-cone amplitude, integrated over

the longitudinal momentum fraction. By choosing a given ↵  ↵c one determines the value of

⌘1 and ⌘2.
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FIG. 3. Transverse LF distributions for a fermion in the valence component. The same lines as in

Fig. 2.

B. Vector interaction

For the vector exchange case, the coupling constant is defined as

↵
V =

�
v
F �

v
S

8⇡
(35)

and it does not contain any mass in the denominator, given the dimensionless nature of the

vertex constants in the interaction Lagrangian. Being dimensionless the vertex constants,

the BSEs both in Euclidean and in Minkowski spaces, as well as the system of integral

equations for the NWF, have the property to be invariant under a scale transformation in

the ultraviolet region. Such a symmetry imposes a maximum value for the coupling constant,

beyond which the invariance is broken. One encounters a similar situation in the fermion-

fermion bound state problem in the ladder approximation both in Euclidean [21] and in

Minkowski space [6]. Here, we adopt a conservative point of view and present calculations

for moderate bindings, leaving the detailed study of the scale invariance breaking, that should

establish at larger bindings, for a future work [22]. Our results in Minkowski space, shown

in Table III up to B/m̄ = 0.5, nicely agree with the Wick-rotated calculations, analogously

to what happens for the scalar-exchange case.

In Table IV, the valence probabilities are shown for the vector exchange. In the range

of B/m̄ we have investigated, as dictated by the onset of a scale-invariant regime, they

smoothly decrease.
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5.2 Scale invariance in the fermion-boson system 121

The parameters used are m„ = mÂ = 1, µ = 0 and B = 0.5. The numerical result is
compared in the figure with the following product

“1.455 Â2(“, z) æ const ◊ f2(z) , (5.39)

showing that the asymptotic behavior for large “ coincides very well with the result
from the numerical solution of the original equation. It is remarkable that the simple
analysis for the scale invariant regime can represent so well the asymptotic behavior
of the original BSE. Moreover, such agreement supports the result found for the
dependence of – on ÷ in Eq. (5.32).
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Figure 5.4. The light-front wave function Â2(“, z0 = 0) obtained from the solution of the
original equation (5.8) as a function of “ (solid blue curve) and its product with the
asymptotic limit found in the high momentum limit (dashed black curve).

Another check of the power-law behavior in the UV limit, discussed in Ref. [48],
is on the extension of the numerical calculations for “/m̄2 > 40 for Eq. (5.8). The
fall-o� for that case can be described by C1/“2.26, for µ/m̄ = 0.15, and C2/“2.43, for
µ/m̄ = 0.50, what is in agreement with the values predicted by the scale invariance
analysis presented above.

5.2.2 High momentum limit in the Minkowski space

Next one can consider the asymptotic limit of the integral equation for the Nakanishi
weight functions in Minkowski space (5.8). The high momentum limit of the equation
is presented in Appendix H.4 where, for simplicity, the derivation is made for „2,
following what was found in Eqs. (5.29) and (5.31). As discussed in the appendix,
one can introduce the following ansatz

g2(“, z) = “rf2(z) (5.40)

where r = 2 + ÷

2 with the constraint that ≠1 < r < 0, which is equivalent to (5.27).
Following the conclusion of the results obtained from the Wick-rotated equation,
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the LFWF, defined as

„̃i(›, “; Ÿ2) = iM
⁄ Œ
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dk≠

2fi
„i(k, p) =
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d“Õ gi(“Õ, z; Ÿ2)

[“Õ + “ + (1 ≠ z2)Ÿ2 + z2m̄2 ≠ i‘]2
,
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where › = q+

1 /p+ = k+/p+ + 1/2 = (1 ≠ z)/2. It is important to bear in mind
that the BS amplitude is properly normalized through its covariant normalization
condition for computing the LF distributions. The normalization procedure is
described in Ref. [48].
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attempt of presenting a first investigation towards the description of a mock nucleon,
the results were computed for an unbalanced mass with ratio mS/mF = 2. Two
values of the exchanged vector boson mass are considered, namely µ/m̄ = 0.15
and µ/m̄ = 0.50, while the binding energy is fixed at B/m̄ = 0.1. For the
sake of completeness, the coupling constants associated with the exhibited results
are –V = 0.648 (µ/m̄ = 0.15) and –V = 0.898 (µ/m̄ = 0.5), while the valence
probabilities are Pval = 0.75 (µ/m̄ = 0.15) and Pval = 0.77 (µ/m̄ = 0.5). This
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is a straightforward consequence of the mass asymmetry in this case. It is worth
to reinforce that these results could be di�erent for a more realistic approach, that
includes, e.g., vertex and self-energy corrections. However, the general shape, before
properly applying the evolution to the result at the initial scale, should be the same.

A deep analysis on the LF-momentum distributions of the (1/2)+ model can
be found in Ref. [48]. Therein are also presented the valence probabilities and an
extensive physical interpretation of the features seen in the results.

The next step is to analyze in detail the asymptotic behavior of the transverse
momentum distribution. As it will be seen in the next section, the fall-o� of the
result obtained from the numerical solution of Eq. (5.7) for the vector exchange
coincides with the one predicted by the analytical analysis of the ultraviolet form
of the integral equations in the scale invariant regime. The current toy model,
although didactic, is quite simple and is lacking more realistic propagators and
interaction kernel. Naturally, if considered within QCD theory, the features brought
by scale invariance would be deeply changed as the theory has its own intrinsic scale.
Therefore, the discussion presented below is limited to the model discussed in this
chapter.

5.2 Scale invariance in the fermion-boson system
As discussed before, the coupling constant for fermion-boson system with the vector
exchange, –V = ⁄v

F
⁄v

S
/(8fi), is dimensionless, feature that follows from the nature
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space presents a pair of log-periodic solutions, which demands one extra scale to
determine the solution uniquely [142]. Although the study has been done for the
large momentum region, the solution of the original set of coupled integral equations
(5.7) is also given by the values of ÷ satisfying Eq. 5.27 for a given value of –. This
can be confirmed numerically for the general case, but one particular example will
be discussed.

The solutions (5.29) and (5.31) were confirmed by solving the integral equations
(5.23) numerically. When getting close to the extremes of ÷, given by Eq. (5.27),
obtaining the solution gets more demanding numerically. It was also checked
numerically that for the solutions in Eq. (5.28) the terms coupling the integral
equations of Eq. (5.23) are very close to zero. Therefore, the equations can be
decoupled, obtaining the same aforementioned results (considering that „2/M æ 0).

One can now use the results from the Wick-rotated equation and derive the
asymptotic behavior of the LFWF. The first step is to obtain the NIR of the BS
amplitude in the asymptotic region, i.e

„i(k2) =
⁄ Œ

0
d“

⁄ 1

≠1
dz

gi(“, z)
(k2 ≠ “ + ı‘)3 æ 1

(k2 + ı‘)≠ ÷
2

, (5.34)

recalling that z = 1 ≠ 2›. The solution of Eq. (5.34) can be found using the following
ansatz

gi(“, z) = “2+ ÷i
2 fi(z) . (5.35)

From that, the valence wave function in the asymptotic limit, written in terms of
the NIR, is expected to be proportional to the original LFWF, i.e.

Âi(“, z) =
⁄ Œ

0
d“Õ gi(“Õ, z)

(“Õ + “ + (1 ≠ z2)Ÿ2 + z2m2)2

=
⁄ Œ

0
d“Õ “Õ2+ ÷

2 fi(z)
(“Õ + “ + (1 ≠ z2)Ÿ2 + z2m2)2 Ã fi(z)

(“ + (1 ≠ z2)Ÿ2 + z2m2)≠1≠ ÷i
2

(5.36)

where the function fi(z) needs to be determined numerically, by solving the BSE
equation in the asymptotic limit. Despite of that, it is simple to see that the expected
ultraviolet behavior of the light-front wave function is given by

Âi(“, z) ≥ “1+ ÷i
2 . (5.37)

This result can be compared to the numerical solution of the coupled integral
equations (5.8).

One particularly interesting example, where the matching between results from
the original equation (5.8) and scale invariant high-momentum regime, is obtained
when – reaches its maximum value. In this case –c = –2(÷) u 1.187 and ÷ = ≠4.9108.
For this situation, as Â1 is expected to have a similar fall-o�, it will be presented
the results only for Â2:

Â2(“, z) ≥ “≠1.45541 . (5.38)

The above scaling behavior is expected to be independent of the bound state mass
and this should be verified numerically. In Fig. 5.4, it is exemplified the case
– = 1.189, which very close to the maximum value possible for the coupling constant.

120 5. Boson-fermion bound state

space presents a pair of log-periodic solutions, which demands one extra scale to
determine the solution uniquely [142]. Although the study has been done for the
large momentum region, the solution of the original set of coupled integral equations
(5.7) is also given by the values of ÷ satisfying Eq. 5.27 for a given value of –. This
can be confirmed numerically for the general case, but one particular example will
be discussed.

The solutions (5.29) and (5.31) were confirmed by solving the integral equations
(5.23) numerically. When getting close to the extremes of ÷, given by Eq. (5.27),
obtaining the solution gets more demanding numerically. It was also checked
numerically that for the solutions in Eq. (5.28) the terms coupling the integral
equations of Eq. (5.23) are very close to zero. Therefore, the equations can be
decoupled, obtaining the same aforementioned results (considering that „2/M æ 0).

One can now use the results from the Wick-rotated equation and derive the
asymptotic behavior of the LFWF. The first step is to obtain the NIR of the BS
amplitude in the asymptotic region, i.e

„i(k2) =
⁄ Œ

0
d“

⁄ 1

≠1
dz

gi(“, z)
(k2 ≠ “ + ı‘)3 æ 1

(k2 + ı‘)≠ ÷
2

, (5.34)

recalling that z = 1 ≠ 2›. The solution of Eq. (5.34) can be found using the following
ansatz

gi(“, z) = “2+ ÷i
2 fi(z) . (5.35)

From that, the valence wave function in the asymptotic limit, written in terms of
the NIR, is expected to be proportional to the original LFWF, i.e.

Âi(“, z) =
⁄ Œ

0
d“Õ gi(“Õ, z)

(“Õ + “ + (1 ≠ z2)Ÿ2 + z2m2)2

=
⁄ Œ

0
d“Õ “Õ2+ ÷

2 fi(z)
(“Õ + “ + (1 ≠ z2)Ÿ2 + z2m2)2 Ã fi(z)

(“ + (1 ≠ z2)Ÿ2 + z2m2)≠1≠ ÷i
2

(5.36)

where the function fi(z) needs to be determined numerically, by solving the BSE
equation in the asymptotic limit. Despite of that, it is simple to see that the expected
ultraviolet behavior of the light-front wave function is given by

Âi(“, z) ≥ “1+ ÷i
2 . (5.37)

This result can be compared to the numerical solution of the coupled integral
equations (5.8).

One particularly interesting example, where the matching between results from
the original equation (5.8) and scale invariant high-momentum regime, is obtained
when – reaches its maximum value. In this case –c = –2(÷) u 1.187 and ÷ = ≠4.9108.
For this situation, as Â1 is expected to have a similar fall-o�, it will be presented
the results only for Â2:

Â2(“, z) ≥ “≠1.45541 . (5.38)

The above scaling behavior is expected to be independent of the bound state mass
and this should be verified numerically. In Fig. 5.4, it is exemplified the case
– = 1.189, which very close to the maximum value possible for the coupling constant.

Alvarenga Nogueira et al. in preparation 

Solution of the Ladder BS equation in Minkowski space via Nakanishi integral representation 
[PRD100 (2019)016021]

Giovanni Salmè talk on Monday afternoon



5.2 Scale invariance in the fermion-boson system 121

The parameters used are m„ = mÂ = 1, µ = 0 and B = 0.5. The numerical result is
compared in the figure with the following product

“1.455 Â2(“, z) æ const ◊ f2(z) , (5.39)

showing that the asymptotic behavior for large “ coincides very well with the result
from the numerical solution of the original equation. It is remarkable that the simple
analysis for the scale invariant regime can represent so well the asymptotic behavior
of the original BSE. Moreover, such agreement supports the result found for the
dependence of – on ÷ in Eq. (5.32).
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Figure 5.4. The light-front wave function Â2(“, z0 = 0) obtained from the solution of the
original equation (5.8) as a function of “ (solid blue curve) and its product with the
asymptotic limit found in the high momentum limit (dashed black curve).

Another check of the power-law behavior in the UV limit, discussed in Ref. [48],
is on the extension of the numerical calculations for “/m̄2 > 40 for Eq. (5.8). The
fall-o� for that case can be described by C1/“2.26, for µ/m̄ = 0.15, and C2/“2.43, for
µ/m̄ = 0.50, what is in agreement with the values predicted by the scale invariance
analysis presented above.

5.2.2 High momentum limit in the Minkowski space

Next one can consider the asymptotic limit of the integral equation for the Nakanishi
weight functions in Minkowski space (5.8). The high momentum limit of the equation
is presented in Appendix H.4 where, for simplicity, the derivation is made for „2,
following what was found in Eqs. (5.29) and (5.31). As discussed in the appendix,
one can introduce the following ansatz

g2(“, z) = “rf2(z) (5.40)

where r = 2 + ÷

2 with the constraint that ≠1 < r < 0, which is equivalent to (5.27).
Following the conclusion of the results obtained from the Wick-rotated equation,
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5.2.2 High momentum limit in the Minkowski space

Next one can consider the asymptotic limit of the integral equation for the Nakanishi
weight functions in Minkowski space (5.8). The high momentum limit of the equation
is presented in Appendix H.4 where, for simplicity, the derivation is made for „2,
following what was found in Eqs. (5.29) and (5.31). As discussed in the appendix,
one can introduce the following ansatz
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where r = 2 + ÷

2 with the constraint that ≠1 < r < 0, which is equivalent to (5.27).
Following the conclusion of the results obtained from the Wick-rotated equation,
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the equations can be decoupled and only one of the components can be solved
independently. Here it is studied the equation for „2, but an analogous development
could be done for „1.

Following the derivation detailed in Appendix H.4, the unknown function f(z) is
found to obey the following equation

f(z) = 1 + |r|
2 + 4|r|

⁄ 1

≠1
dzÕf(zÕ)

◊
; 5 1 + z

1 + zÕ

6|r|
◊(zÕ ≠ z) +

5 1 ≠ z

1 ≠ zÕ

6|r| 5
1 + 4|r|

(1 ≠ zÕ)

6
◊(z ≠ zÕ)

<
,

(5.41)

where it was used the relation between – and r obtained in Eq. (5.32) and the
subscript 2 in f(z) was dropped out for simplicity. Notice that for r = 0 one has
that f(z) = f0, where f0 is a constant, as expected. The numerical solution of Eq.
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Figure 5.5. f(z) as a function of z for di�erent values of – and corresponding r. The
eigenvalue ⁄ is also provided in the figure.

(5.41) is found by solving the following eigenvalue equation

⁄ f(z) = 1 + |r|
2 + 4|r|

⁄ 1

≠1
dzÕf(zÕ)

◊
; 5 1 + z

1 + zÕ

6|r|
◊(zÕ ≠ z) +

5 1 ≠ z

1 ≠ zÕ

6|r| 5
1 + 4|r|

(1 ≠ zÕ)

6
◊(z ≠ zÕ)

<
.

(5.42)

The eigenstates for real eigenvalues ⁄ close to 1 are shown in Fig. 5.5. The solution
needs to be further explored, including the case of complex values of r in order
to study the log-periodic solutions which appear beyond the critical value of the
coupling constant. In the case studied here, Eq. (5.42) was constrained to real
values of r in the numerical solution. The figure indicates an interesting property of
f(z), the strong enhancement exhibited close to z = 1. This enhancement is also
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The eigenstates for real eigenvalues ⁄ close to 1 are shown in Fig. 5.5. The solution
needs to be further explored, including the case of complex values of r in order
to study the log-periodic solutions which appear beyond the critical value of the
coupling constant. In the case studied here, Eq. (5.42) was constrained to real
values of r in the numerical solution. The figure indicates an interesting property of
f(z), the strong enhancement exhibited close to z = 1. This enhancement is also
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The coupled integral equations (5.23) has two pairs of solutions for Fi, corre-
sponding to the two possible coupling constants, –1 and –2. They are found to
be

F1(Ï) = sin2 Ï, F2(Ï) = 0 and F1(Ï) = 0, F2(Ï) = sin2 Ï. (5.28)

This leads to a pair of solutions for the BS amplitude (5.22). The first solution is
given by

„1(k4, k) = K÷+1 and „2(k4, k) = 0 . (5.29)

for which the coupling constant reads

–1(÷) = ≠fi(3 + ÷)(5 + ÷)(7 + ÷)
4(6 + ÷) , (5.30)

while the second one is

„1(k4, k) = 0 and „2(k4, k) = K÷. , (5.31)

which is obtained from the F1 and F2 amplitudes related to –2, i.e.

–2(÷) = ≠fi(6 + ÷)(4 + ÷)(2 + ÷)
4(3 + ÷) . (5.32)

It is worth noticing that one can relate the two couplings through the following
formula

– = –1(≠9 ≠ ÷) = –2(÷) . (5.33)

The support obtained in Eq. (5.27) is better illustrated when one considers Fig.
5.3, where Eqs. (5.30) and (5.32) are shown. As seen in the figure, the range of ÷
that encloses both solutions and still ensures that the kernel of Eq. (5.23) does not
diverge when y æ Œ is the one given by Eq. (5.27).
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Figure 5.3. –1 (left panel) and –2 (right panel) as a function of ÷ from Eqs. (5.30) and
(5.32), respectively.

The maximum value of the coupling constant was found to be –c u 1.187 for
–1(÷max) at ÷max u ≠4.089, and for –2(÷max) at ÷max u ≠4.911. In Fig. 5.3 one
observes that for a given value of – < –c two solutions, –(÷1) and –(÷2), are found.
For the critical value, –c, there is only one possible solution instead. For –i above
the maximum value, the exponent ÷ is complex and the BS equation in Euclidean
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• Integral  Representation to solve Dyson-Schwinger in diferente gauges;

• Un-Wick rotation: BSE and SD - promissing tool allied to Integral Representations;

• Consistence of the scale invariance analysis in Euclidean and self-energies NIR;

• Cosnsitence of the scale invariance analysis and BS solution for fermion-boson
problem;

• Self-energies, quark-gluon vertex, ingredients from LQCD ….

• Confinement – How to include with Int. Representation?

• Apply to the study the structure: pion, kaon, D, B, rho…, and the nucleon

• Form-Factors, PDFs, TMDs, FRAGMENTATION FUNCTIONS...

Conclusions and Perspectives



24

THANK YOU!

LIA/CNRS - SUBATOMIC PHYSICS: FROM THEORY TO APPLICATIONS

IPNO (U.Van Kolck, Jaume Carbonell)…. + Brazilian Institutions …


