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(> Confinement is encoded in the (full dressed) gluon and ghost propagators!
We consider the Yang-Mills theory in the Lorenz type gauge.

The Euclidean gluon propagator and ghost propagator in the Landau gauge 0,47, = O are defined by
ko ky,
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1997— Scaling solution: consistent with the Gribov/Zwanziger prediction [realized for D = 2]
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2006— Decoupling solution: massive gluon and massless ghost [realized for D = 4, 3]
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[Duarte-Oliveira-Silva, PRD94, 014502 (2016)], arXiv: 1605.00594[hep-lat]



() We consider the massive Yang-Mills model described by the ordinary massless Yang-Mills (YM)
Lagrangian in the manifestly Lorentz covariant gauge of the Lorenz type: gauge-fixing (GF) term and
the associated Faddeev-Popov (FP) ghost term plus a naive gluon mass term,
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|
D%YM — —Zgzu LQZHV’

A A @ A A I A\2
ZGF = N 8N”Qf,u -+ EJV N = —504 (8“&%; )
Lp = i€ 0" [ PC" = i670"(0,6" + gfapcdE),

1
Lon = =M "7, (4)
2

m
Here g, M and a(— 0) are the parameters of the massive Yan-Mills model.

In this talk we regard the massive Yang-Mills model as a low-energy effective theory for describing the
D = 4 decoupling solution of the Yang-Mills theory and examine gluon and quark confinement.

e In the Euclidean region, the massive Yang-Mills model with (at least one-loop) quantum
corrections being included well reproduces propagators and vertices of the decoupling solution in the
covariant Landau gauge in the confining phase of the Yang-Mills theory, as demonstrated in the last ten
years by [Wschebor, Tissier, Serreau, Reinosa, ... |.

This can be done in the so-called infrared safe renormalization scheme by taking the renormalization
conditions resulting from the non-renormalization theorem (in the Landau gauge), initiated by [Tissier
and Wschebor, 2010].



(® Fitting of the numerical simulations of the Yang-Mills theory to the massive Yang-Mills model
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Figure 1: The gluon propagator 2 and ghost propagator A, as functions of the Euclidean momentum
kg.

Both gluon propagator and ghost propagator in the decoupling solution of the Yang-Mills theory
in the Landau gauge are well reproduced by the massive Yang-Mills model at the specific values of
parameters g and M, which we call the physical point for the Yang-Mills theory:

g°C1(Q)
g=41+01 | & N:=——= =0.321+0.02 |,
1672
M g M2
— =0.454 4+ 0.004 | & m° = — = 0.206 £+ 0.004 | ,
Z p
[Z = 2.65 £ 0.02]. (5)

The origin of such a gluon mass term can be discussed separately. ...



(> Running coupling constant is always finite and asymptotic free in the infrared as well as the ultraviolet.
e decoupling solution of the Yang-Mills theory on a lattice
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Figure 2: (left) Running coupling constant: Landau pole, scaling solution, decoupling solution, physical
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(> Reflection positivity is one of the the Osterwalder-Schrader (OS) axioms which are general
properties to be satisfied for the Euclidean quantum field theory formulated in the Euclidean space:

(0S.3) Reflection positivity : Any complex-valued test function fo € Cy, f1 € SL(RP), .-, fx €
S (RPY),
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where .7, (R”) denotes a complex-valued test (Schwartz) function with support in {(2, zp);zp > 0}
and 6 is a reflection with respect to a hyperplane 2 = 0: for a function f,, € LS”(RD”),

0r = 0(z°, @) = (—z°, @), (0fn)(z1, - ,2n) = fn(Oz1, - ,0x,). (1)

This is a Euclidean version of the positivity axiom in the Wightman axioms for the relativistic quantum
field theory formulated in the Minkowski spacetime.

(W.3) Positivity: For all fo € Cy, f1 € S(RP), -+, fxv € Z(RPYN), (N =0,1,2,--+)
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The violation of reflection positivity in the Euclidean region is regarded as a necessary condition for gluon
confinement. To demonstrate the violation of reflection positivity, one counterexample suffices.



We focus on a special case (IN = 2) of a single propagator So = 2. Then the reflection positivity reads

[dPa [ Py (@ —20)9(@ — yooo — uo)F(ysun) 20, f € AERD),  (2)
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where we defined the Schwinger function A(p, zp — yp) by
9@~ y)i= [ @7p P TVA(P 2D ~ yo). @
For the inequality (3) to hold for any f € .7, (R"), the Schwinger function A must satisfy the positivity

Ap,—(t+1)) = A(p,t +t') > 0. (5)

We consider a specific Schwinger function defined by the Fourier transform of the propagator:
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For the free massive theory (g = 0), we find A(t) is positive for any ¢:
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There is no reflection-positivity violation for the free massive propagator, as expected. For unconfined
particles, the reflection positivity should hold.

(9 The reflection positivity is violated for the massive Yang-Mills model at the physical point of
parameters, as shown by the numerical calculations.
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Figure 3: (left) gluon propagator & as a function of kg, (right) the Schwinger function A as a
function of ¢, at the physical point of the parameters.

We can prove that the reflection positivity is violated for any choice of the parameters in the massive
Yang-Mills model.
This suggests the reflection positivity violation for the decoupling solution of the Yang-Mills theory.
In order to consider the origin, we proceed the complex analysis of the Yang-Mills theory.



(> Spectral representation of a propagator

In the Minkowski region with time-like momentum k& > 0, a propagator Z(k?) has the Killén—Lehmann
spectral representation under assumptions of the general principles: (i) the spectral condition, (ii) the
Poincaré invariance and (iii) the completeness of the state space

P(k?) = /Ooo NG ITIN 0, (1)
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with the weight function p(c?) called the spectral function
0(ko)p(k?) == (2m)" > [(0]$(0)| Pa)|*8” (Pn — k), (2)

The spectral function p has contributions from a stable single-particle state with physical mass mp
(pole mass) and intermediate many-particle states |p1, ..., pn) with a continuous spectrum,

p(k*) =Z8(k* — mp) + p(k*), k* >0,

p(k%) =(2m)" " [{01¢(0)|p1, oy pu) 767 (01 + oo + P — k). (3)
n=2
Then it is written as the sum of contributions from the real pole k* = m?% and the others k* € [¢2. , c0)
Z >0 pla?)
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The spectral representation can be extended to the complex k% € C.
(> In the absence of complex simple poles, the spectral representation can be extended to the complex
momentum k* € C. A propagator Z(k?) as a complex function of z = k* € C has

2(k%) = /OOO da2L‘11 ke C—[o” O iy 00), p(c?) = %Im P(c” + ie). (5)
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Figure 4: Possible singularities of the propagator on the complex k? plane, (Left) a real pole and the
branch cut on the positive real axis, (Right) a pair of complex conjugate poles and the branch cut.

(> In the presence of complex simple poles, the propagator has the generalized spectral representation,

D(k") = Dp(k*) + De(k), k€ C = ([0, 00) U {2e}0),

N Z zZ" [ dE?
D,(k*) = CEEm (U_Zw)_kQ, j’{ Q(k),

D.(k°) := [JOO d02%, p(c?) = %Im P(c” + ie). (6)



(O The gluon propagator Z(k?) in the massive Yang-Mills model has a pair of complex conjugate poles
on the complex momentum on the complex momentum k? plane.
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Figure 5: (left) the real part Re 2(k?), and (right) imaginary part Im 2(k?) of the gluon propagator
2(k?) on the complex k* € C. Poles at k* = v £ iw, v/M? = 1.123, w/M?* = 2.044.
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Figure 6: The gluon propagator Z(k?) as a function of k? restricted on the real axis k* € R,
g
(left) the real part Re 2(k?), (right) the scaled imaginary part Im 2(k? + ie) /7 = p(k?).

The spectral function p(k?) of the massive Yang-Mills model is always negative.




This is consistent with the negativity of p(k?) at large k* shown by [Oehme and Zimmermann,1980].

(> The Schwinger function is also separated into the two parts:

AW =250 +A0), Ay i= [ TEE, (k) )

(0. @)

e The cut part A.(t) is directly written as an integral of the spectral function as

T dkp > ? > 1 /2
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To one-loop order in the massive Yang-Mills model, the spectral function p(c?) takes the negative value

p(c?) < 0for " 6?>0 = A.(t) <O0for"t >0, (9)
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Figure 7: (left) the gluon propagator in the Euclidean region 2(k%) = 2,(—k%) + Z.(—k%) where
P.(—k%) < 0 and (right) the gluon Schwinger function A(t) = A,(t) + A.(t) for k* = —k% < 0.



e The pole part: In the presence of a pair of complex conjugate poles at k% = v + iw(v, w > 0)
with the respective residues Z, Z* € C, the pole part of the propagator in the Euclidean region reads

Z Z* B 2Re[Z]k?E + (v Re[Z] + w Im[Z])

D (—EL) — =
W) = ) TR (0 w) kg + 20kg + (0% + w?)

(10)

This pole part of the propagator agrees with the Gribov-Stingl form [Stingl, 1986]. This is in good
agreement with the lattice results.
The pole part of the Schwinger function is exactly obtained as

 VRe(Z2)2 + Im(2)?

Ap(t) = (0F 1 wd) 1A exp[—t(v® + w2)1/4 cos ] cos[t(v® + w2)1/4 sinp + ¢ — §],
1 w Im(Z)
@ := —arctan —, § := arctan : (11)
2 v Re(Z)

Therefore, the pole part has negative value at a certain value of ¢,
A, (t) < 0for 't > 0. (12)
Thus, A(t) = A.(t) + A,(t) has necessarily negative value at a certain value of ¢,
A(t) = Ad(t) + Ay(t) < 0 for ¢ > 0. (13)

Thus we complete the proof that the reflection positivity is always violated in the massive Yang-Mills
model to one-loop order (irrespective of the choice of the parameters g and M).



3 Relation between the number of poles and the winding
number of a propagator

The negativity of the spectral function and the existence of complex conjugate poles are interrelated: It
is shown that the negative spectral function yields one pair of complex conjugate poles (or Euclidean real
poles of multiplicity 2) [Hayashi and Kondo, 2019]. arXiv:1812.03116[hep-th]

Theorem (principle of argument) For a given region #Z C C, let Ny (C') be the winding number
of the phase 0(k?*) of the propagator Z(k?) for a closed contour C' as a boundary C' = 0% of the

(12
region Z where the phase 6(k?) is equal to the argument of 2(k?) = |2(k?)|e?*):

_ 1 2 2'(K*) [ db(k?)
Nw(C) = 271 Cdk 2(k2) ?{y 27

<A (1)

Then Ny (C) is equal to the difference between the number of zeros Nz(%#) and the number of poles
Np(,%) in Z%:

Im &2 M
Nw(C = 0#) = Nz(#) — Np(Z#)
< Np(#) = —Nw(C = %) + Ny (#) ()
For the contour C divided into two paths C = C; + Oy, PAPALAAA .
Nw(C) = Nw(C1) + Nw(C2). G
&



(Case 1) Positive spectral function
Suppose that a propagator exhibits the following behaviors. z := k* € C.

(i) The complex propagator has the leading asymptotic behavior: 2(z) ~ —%ﬁ(z) as |z| — oo,
where D(z) is a real and positive function D(z) > 0 for large |z|.
(i) The spectral function is always positive: p(c?) > 0, i.e., Im Z(o* + i€) > 0 for 6% > 0.

(iii) The Euclidean propagator is positive in the n.b.d. of the origin: Z(—e) > 0 for sufficiently small
e > 0.

(i) First of all, D(z) often depends only on |z|: D(z) = D(|z|). For example, for the “physical
propagator” that has the spectral representation,

p(o”
Ty (K?) 1= —m— / AT 250, ple?) >0, @

D(z) is a constant. Indeed, for sufficiently large |z,

o' 1 -
Donys(2) ~ == z+/2 dan(JZ)] = —-D(2), (4)
70
(i) yields the contribution from the large circle C
7'(k?) N 2 , -1 1 —1
= (log Z(k = (— log k ) = .— Nw(C1) = — dk’— = —1.
7(%2) (log 7(k7)) = (—log k™ +...) = —— +. w(C1) = o— SR



As shown in the next slide, (i),(ii),(iii) lead to

Nw(Cs) = +1. (6)
Hence, the net winding number is zero
Nw(C) = Nw(C1) + Nw(C3) = 0. (7)
Therefore we obtain
Np = Ny. (8)

If the complex “physical propagator” (3) has no zeros Nz = 0. it has no unphysical poles
Np=0 (9)

We call poles which are not located on the positive real axis unphysical poles, and particularly poles
located on the negative real axis Euclidean poles or tachyonic poles.



(Case I) Positive spectral function Ny (C3) = +1, (Nw(C1) = —1, Np = Ny)

Im k2
Ca+
» R
Q C—(—» Re ke
e F

D(k2)

>

© D)

Re D(k2), Im D(k2)

(iii) Re D(-0)>0

Im D(k2)=0

N

Re D(k2)
(i1) Im D(k>+10)=n p(k2)>0
\R’
Re k2
P’ (1) D(k2)<0

(ii) Im D(k-i0)<0

Re D(k2)=0



(Case Il) Negative spectral function Ny (Cs) = —1, (Nw(Cy1) = —1, Np = Nz + 2)
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(Case I1)" Quasi-negative spectral function Ny (C3) = —1, (Nw(C1) = —1, Np = Nz + 2)
We call a spectral function quasi-positive (resp. quasi-negative) if and only if p(k}) > 0
(resp. p(kZ) < 0) at all real and positive zeros k; of Re D(k?) i.e., Re D(k;) = 0 (ki > 0).

Im k2
A \E Re D(k2)‘z Im D(k2)
Re D(k2)
Car (iii) Re D(-0)>0 (if) Im D(ke-i0)>0
: \O_:J;Re ke —1= : > Relk
C Im D(k2)=0 0 Wﬁ’ (1) D(k2)<0
(ii; Im D(k>+i0)=n p(k2)<0

Im D(k2)
Re D(k:)=0 | D)

O=+m

D(k2)

> Re D), O=—m

Re D(k2)=0
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(> We have considered the analytic continuation of the gluon propagator from the Euclidean region to
the complex momentum plane towards the Minkowski region. Then we have derived general relationships
between the number of complex poles of a propagator and the sign of the spectral function originating
from the branch cut in the Minkowski region under some assumptions on the asymptotic behaviors of
the propagator.

(> We have applied this relation to the massive Yang-Mills model with one-loop quantum corrections,
which is to be identified with a low-energy effective theory of the Yang-Mills theory in the sense that the
confining decoupling solution for the Euclidean gluon and ghost propagators of the Yang-Mills theory in
the Landau gauge obtained by numerical simulations on the lattice are reproduced with good accuracy
from the massive Yang-Mills model under the infrared safe renormalization scheme.

(> We have shown that the gluon propagator in the massive Yang-Mills model has a pair of complex
conjugate poles (or Euclidean poles of multiplicity two), in accordance with the fact that the spectral
function is always negative, while the ghost propagator has at most one “unphysical” pole.

The complex structure of the propagator enables us

to give an analytical proof that the reflection positivity is violated for any choice of the parameters in
the massive Yang-Mills model, including the physical point of the Yang-Mills theory,

and to explain why the Euclidean gluon propagator is well described by the Gribov-Stingl form, which
comes from the dominant pole part rather than the relatively small cut part.

() It is well-known that the gluon spectral function becomes negative in the ultraviolet region in the
Landau-gauge Yang-Mills theory due to [Oehme and Zimmermann (1980)]. In fact, the negativity of
the spectral function in a weak sense, namely, the quasi-negativity of the spectral function is enough to
deduce the existence of complex poles.



(> The massive Yang-Mills model well reproduces gluon and ghost propagators of the decoupling
solution in the Euclidean region of the pure Yang-Mills theory in the Landau gauge by a suitable choice
of parameters g and M.

(> The reflection positivity is violated in the Euclidean region of the massive Yang-Mills model at the
physical point of the parameters, as shown by observing the negativity of the Schwinger function obtained
as the Fourier transform of the gluon propagator in a numerical way.

The violation of reflection positivity in the Euclidean region is regarded as a necessary condition for
gluon confinement.

(> The violation of reflection positivity in the Euclidean region is understood from the complex structure
of the gluon propagator obtained by performing the analytic continuation of the Euclidean propagator to
the entire complex squared momentum plane: The violation of reflection positivity follows from

(i) the negativity of the spectral function obtained from the discontinuity of the gluon propagator across
the branch cut on the positive real axis of the complex squared momentum plane.

(ii) the existence of a pair of complex conjugate poles in the gluon propagator.

(> At the physical point, the contribution from the cut part to the gluon propagator in the Euclidean
region is relatively small compared with that from the pole part.

Therefore, the gluon propagator in the Euclidean region is well approximated by the contribution from a
pair of complex conjugate poles, and is well described by the Gribov-Stingl form, in agreement with the
lattice result.



(> In the massive Yang-Mills model we have confirmed at least to one-loop order that the gluon
propagator has two unphysical poles, namely, one pair of complex conjugate poles (or Euclidean poles
with multiplicity two) with no time-like poles, while the ghost propagator has no complex poles [Hayashi
and Kondo, 2019]. This result stems from the negativity of the spectral function p(o?).

It is well-known due to [Oehme and Zimmermann (1980)] that the gluon spectral function becomes
negative in the ultraviolet region in the Landau-gauge Yang-Mills theory. In fact, the negativity of the
spectral function in a weak sense, namely, the quasi-negativity is enough to deduce the existence of
complex poles.

(> The presence of complex poles invalidates the ordinary Kallén-Lehmann spectral representation and
therefore indicates the gluon confinement in the sense that the one gluon particle state must be excluded
from the physical spectrum.

Furthermore, the absence of a time-like pole in the gluon propagator also suggests that one gluon
asymptotic state does not exist in the asymptotic state space in the Yang-Mills theory. Therefore, our
results at the physical point of the massive Yang-Mills model support strongly gluon confinement in the
Yang-Mills theory.



(> The massive Yang-Mills model in the Landau gauge has the gauge-invariant extension, namely,
the complementary gauge-scalar model with a radially fixed fundamental scalar field subject to an
appropriate reduction condition. This is performed through the gauge-independent description of the
BEH mechanism. [Kondo (2018)]

In other words, the gauge-scalar model with a radially fixed fundamental scalar field subject to the
reduction condition can be gauge-fixed to obtain the massive Yang-Mills theory in the covariant Landau

gauge.
[a non-gauge theory = a gauge-fixed version of the gauge-invariant theory]

(> The result that the massive Yang-Mills model exhibits violation of reflection positivity for any choice of
parameters g and M can be understood a consequence of the fact that the complementary gauge-scalar
model has both Confinement-like region and Higgs-like region in a single confinement phase which is
regarded as the continuum realization of the Fradkin-Shenker continuity.
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Figure 8: The magnitude of the violation of reflection positivity obtained from the ratio
mingci<co A(t)/A(t = 0) of the Schwinger functions in the larger range of parameters, (left)
3D plot, (right) contour plot.



(> The massive Yang-Mills theory in the covariant gauge has the gauge-invariant extension.

e [mMYM] massive Yang-Mills theory in the covariant Landau gauge has no longer gauge symmetry,
(although it has the modified BRST symmetry).

However, [mMYM] has a gauge-invariant extension [GIE]. [GIE] is the gauge-scalar model
1
LRr = — Etr[ﬁ’wgf’”] + (DM[:Q%]CID)Jr - (D"[]D), (1)

with a single scalar field in the fundamental rep. of the gauge group G subject to the radially-fixed
constraint,

f(®(z)) := ®(z)' - &(z) — %U2 =0, (v>0)for G =SU(2), (2)

if an appropriate constraint which we call the reduction condition is imposed (off shell),
x(z) := @[V (x) =0, W'=w" g, P]. (3)

Here #'F(x) = WH[o/(x), ®(x)] is the massive vector field mode defined shortly in terms of &/ and
®, which follows from the gauge-independent Brout-Englert-Higgs (BEH) mechanism M = gv /2.
In other words, if we take the covariant Landau gauge and eliminate the scalar field, [GIE] reduces to
[mYM],

rr + Lov + L = Looym = Lyyvm + L + Lor + Lrp (4)

e Based on this correspondence, [mYM] can describe also the Higgs phase by choosing parameters g, M
or g, v.
This is regarded as a continuum realization of the Fradkin-Shenker continuity shown on the lattice.



(> In the presence of complex poles, the usual superconvergence relation

/ " dop(0?) = 0, (5)

due to Oehme and Zimmermann does not hold.
In the presence of one pair of complex conjugate poles, instead, we find that the modified superconvergence
relation holds

o 1 xo
2Re Z + / do’p(c?) =0, 2Im Z = —/ dk® Re 2(k° + ie). (6)
0 _

ﬂ- 00

provided that the propagator has the asymptotic behavior lim,;» k*2(k*) = 0. For the massive

Yang-Mills model to one-loop order at the physical point are

| =00

Re Z = 0.386322, Im Z = 0.861514,

(e@)

o 1
/ do’p(c?) = —0.694533 < 0, —/ dk® Re 2(k* + ie) = 1.74006 > 0,  (7)
0 T

— 0

o 1 o
2Re Z +/ do’p(c”) = 0.0781108, 2Im Z — —/ dk® Re 2(k* + ie) = —0.01703609.
0 ™ J—
(8)

oo



(> For ghosts, we impose the renormalization condition

2

2 2 ~ fin K
T (kp=p)=p’ <= Mp(s=v)=0, v:= — (9)

For gluons, we can take a naive zero-momentum renormalization condition such that

(2) 2 2 fin

I, (kp=0)=M (s =0)=0

[TW1] g)( ) ) , Agn (at p = 1 GeV), (10)
L, (kg=p)=p"+M 7' (s =v) =0

However, I‘f;)(kE = 0) = M? or II"(s = 0) = 0 yields the IR Landau pole, namely, the coupling

constant diverges at a certain momentum in the IR region.
To avoid the IR Landau pole, we replace the zero-momentum renormalization condition by

Z2 oy Ze = 1 Z2ZyZe = 1
[Tw2] § M2 as R e i (at u = 1 GeV). (11)
L,/ (ke =p)=p"+M 7' (s =v) =0

There is a well-known non-renormalization in the Landau gauge for the coupling [Taylor, 1971] which
also holds in the massive Yang-Mills model in the Landau gauge:

2,2 %7y = 22 =1 for a = 0, (12)
For the massive Yang-Mills model in the Landau gauge a = 0, another identity holds

Zy2ZyZy = Z° =1fora=0,, (13)



As Z 22y =14 0,2 and Zg = 1 4 d¢ this relation yields

5M2 :ZMQZ% — 1= Z%Zl — 1= (1 4+ 50)_1 — 1,

(14)



g =4.1, M/u=0.454, G=SU(3), p=1[GeV]

157 o Lattice data 1'0:

: — 1-loop 08l

10! s |

S | S 0.6

< I 2 :
= 5 04
i Eha

0.2

Ot . . ., - Teesereccace - - I

0 1 2 3 4 00

g=4.1, M/u=0.454, G=SU(3), u=1[GeV]

.....................

.....................

ghost propagator A, as functions of the Euclidean momentum kpg.
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The gluon propagator & as functions of the Euclidean momentum kg.




(> Positivity violation in the complementary gauge-scalar model

For a smaller coupling constant g = 2.3 and M /u = 0.454

9=2.3, M/p=0.454, G=SU(3), p=1[GeV] 9=2.3, M/=0.454, G=SU(3), p=1[GeV]

Kely it

For a more smaller coupling constant g = 1 and M/ = 0.454




For a smaller mass M/ggg1-,qu22 @QQJQG 4 1

g=4.1, M/u=0.2, G=SU(3), u=1[GeV]

kelu it

For a more smaller mass M /¢, = 0,141 and g = 4.1 MI=0.141, G=SU(), p=1[GeV]
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For a much smaller mass_4%/y8 =, 0 08 and g = 4. 1 74EMnggLe@gJ(leg§eV]
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The reflection positivity is violated for any choice of the parameters g and M.
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