

Constraining gluon PDFs with quarkonium production

Melih A. Ozcelik

Institut de Physique Nucléaire Orsay/Université Paris-Sud

ozcelik@ipno.in2p3.fr

Collaborators: M.G. Echevarria, J.-P. Lansberg, C. Pisano, A. Signori

LightCone 2019 - Ecole Polytechnique 16-20 September 2019

Quarkonia & PDFs: Phenomenology

• η_c is a gluon probe at low scales

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation

[J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation

[J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]

• at LO since 2012 and at NLO since 2013 in TMD factorisation

[D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007]

[J.P. Ma, J.X. Wang, S. Zhao, Phys.Rev. D88 (2013) no.1, 014027]

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation

[J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]

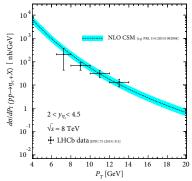
• at LO since 2012 and at NLO since 2013 in TMD factorisation

[D. Boer, C. Pisano, Phys.Rev. D86 (2012) 094007]

[J.P. Ma, J.X. Wang, S. Zhao, Phys.Rev. D88 (2013) no.1, 014027]

• first hadro-production measurement data released in 2015 by LHCb $(p_T > 6 \text{ GeV})$ [LHCb, Eur.Phys.J. C75 (2015) no.7, 311.]

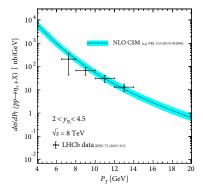
$\eta_{\rm c}$ data at LHCb - 2015



[M. Butenschoen, Z.-G. He, and B.A. Kniehl, PRL 114 (2015) 092004] [H. Han, Y.-Q. Ma, C. Meng, H.-S. Shao and K.-T. Chao, PRL 114 (2015) 092005] [H.-F. Zhang, Z. Sun, W.-L. Sang and R. Li, PRL 114 (2015) 092006]

• first hadro-production measurement data released in 2014 by LHCb $(p_T > 6 \text{ GeV})$ [LHCb, Eur.Phys.J. C75 (2015) no.7, 311.]

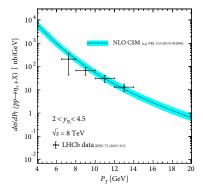
$\eta_{\rm c}$ data at LHCb - 2015



• first hadro-production measurement data released in 2014 by LHCb $(p_T > 6 \text{ GeV})$ [LHCb, Eur.Phys.J. C75 (2015) no.7, 311.]

• NLO Colour-Singlet Model describes LHCb data well (see plot)

$\eta_{\rm c}$ data at LHCb - 2015



• first hadro-production measurement data released in 2014 by LHCb $(p_T > 6 \text{ GeV})$ [LHCb, Eur.Phys.J. C75 (2015) no.7, 311.]

- NLO Colour-Singlet Model describes LHCb data well (see plot)
- unfortunately, data do not cover low p_T, however could be measured down to p_T = 0 at fixed-target experiment AFTER

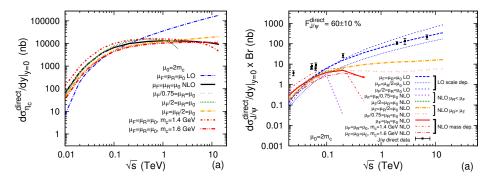
[C. Hadjidakis et al., arXiv:1807.00603 [hep-ex]] [Y. Feng et al., Nucl.Phys. B945 (2019) 114662]

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation
 - at LO since 2012 and at NLO since 2013 in TMD factorisation
- first hadro-production measurement data released in 2014 by LHCb $(p_T > 6 \text{ GeV})$
 - NLO Colour-Singlet Model describes LHCb data well (see plot)
 - unfortunately, data do not cover low p_T , however could be measured down to $p_T = 0$ at fixed-target experiment AFTER
- encounter problem of *negative* cross-sections with η_c and other quarkonium bound states

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation
 - at LO since 2012 and at NLO since 2013 in TMD factorisation
- first hadro-production measurement data released in 2014 by LHCb $(p_T > 6 \text{ GeV})$
 - NLO Colour-Singlet Model describes LHCb data well (see plot)
 - unfortunately, data do not cover low p_T , however could be measured down to $p_T = 0$ at fixed-target experiment AFTER
- encounter problem of *negative* cross-sections with η_c and other quarkonium bound states
- how to resolve the issue with *negative* cross-sections?

- η_c is a gluon probe at low scales
- simplest of all quarkonia as far as computation of hadro-production
- η_c cross section computation known
 - at NLO since 1992 in collinear factorisation
 - at LO since 2012 and at NLO since 2013 in TMD factorisation
- first hadro-production measurement data released in 2014 by LHCb $(p_T > 6 \text{ GeV})$
 - NLO Colour-Singlet Model describes LHCb data well (see plot)
 - unfortunately, data do not cover low p_T , however could be measured down to $p_T = 0$ at fixed-target experiment AFTER
- encounter problem of *negative* cross-sections with η_c and other quarkonium bound states
- how to resolve the issue with *negative* cross-sections?
 - \rightarrow how is this related to PDFs?

problem of negative cross-sections - η_c and J/ψ at NLO



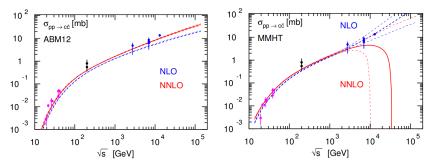
comparison of η_c (left) and J/ψ (right) differential cross-sections at NLO with different scale choices of μ_R and μ_F with CTEQ6M

[Y. Feng, J.-P. Lansberg, J.X. Wang, Eur.Phys.J. C75 (2015) no.7, 313]

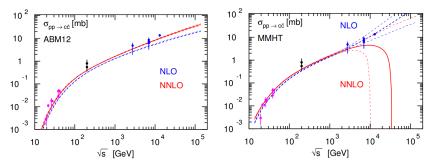
- What are the potential sources for negative cross-sections?:
 - is it due to a failure of theoretical models (NRQCD etc.) for quarkonia?

- What are the potential sources for negative cross-sections?:
 - is it due to a failure of theoretical models (NRQCD etc.) for quarkonia?
 - is it due to the truncation of fixed-order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?

- What are the potential sources for negative cross-sections?:
 - is it due to a failure of theoretical models (NRQCD etc.) for quarkonia?
 - is it due to the truncation of fixed-order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections?
 - is it due to collinear factorisation? Do we need to include TMD effects?

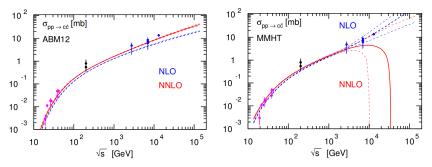


open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT) [Accardi et al., Eur.Phys.J. C76 (2016) no.8, 471] in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however



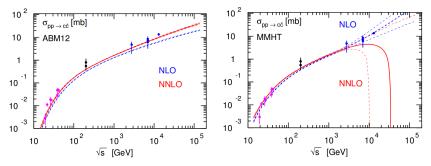
open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT) [Accardi et al., Eur.Phys.J. C76 (2016) no.8, 471] in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however

• $\frac{d\sigma}{dy}$ does not exist at NNLO



open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT) [Accardi et al., Eur.Phys.J. C76 (2016) no.8, 471] in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however

- $\frac{d\sigma}{dv}$ does not exist at NNLO
- full scale analysis not yet performed



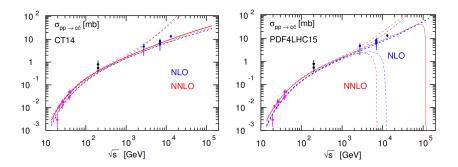
open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (ABM12, MMHT) [Accardi et al., Eur.Phys.J. C76 (2016) no.8, 471] in this case, people attribute the negative cross-section to negative gluon PDFs at low scales and rather low-x, however

- $\frac{d\sigma}{dv}$ does not exist at NNLO
- full scale analysis not yet performed

 \rightarrow therefore one cannot rule out the possibility of negative

cross-sections with positive PDFs

Melih A. Ozcelik (IPNO)



open $c\bar{c}$ production at NLO/N2LO, comparison with different PDFs (CT14, PDF4LHC15) [Accardi et al., Eur.Phys.J. C76 (2016) no.8, 471]

- is it due to a failure of theoretical models (NRQCD etc.) for quarkonia? \rightarrow No, it is a more general problem; see open $c\bar{c}$ production
- is it due to the truncation of fixed-order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections? \rightarrow No, the situation at higher orders will be worse; see open $c\bar{c}$ production
- is it due to collinear factorisation? Do we need to include TMD effects?

- is it due to a failure of theoretical models (NRQCD etc.) for quarkonia? \rightarrow No, it is a more general problem; see open $c\bar{c}$ production
- is it due to the truncation of fixed-order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections? \rightarrow No, the situation at higher orders will be worse; see open $c\bar{c}$ production
- is it due to collinear factorisation? Do we need to include TMD effects? (see TMD side)
- is it due to unfortunate choices of renormalisation μ_R and factorisation μ_F scales?

- is it due to a failure of theoretical models (NRQCD etc.) for quarkonia? \rightarrow No, it is a more general problem; see open $c\bar{c}$ production
- is it due to the truncation of fixed-order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross-sections? \rightarrow No, the situation at higher orders will be worse; see open $c\bar{c}$ production
- is it due to collinear factorisation? Do we need to include TMD effects? (see TMD side)
- is it due to unfortunate choices of renormalisation μ_R and factorisation μ_F scales?
- or is it due to Parton Distribution Functions (PDFs)?

collinear factorisation - η_c at NLO - hadronic cross-section

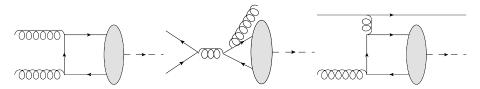
process

$$p + p \to \eta_c + X$$
 (1)

hadronic cross-section

$$\sigma_{pp} = \sum_{ij} \int dx_1 dx_2 \ f_{i/p}(x_1, \mu_F) f_{j/p}(x_2, \mu_F) \ \hat{\sigma}_{ij}(\mu_R, \mu_F, x_1, x_2, \hat{s} = s \, x_1 x_2)$$
(2)

hadronic cross-section has dependence on the scales (μ_R, μ_F, s)



three channels contributing to η_c production at NLO; left - gg channel, middle - $q\bar{q}$ channel, right - qg channel

 J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- G. Schuler publishes his Review in 1994

[G. Schuler, arXiv:hep-ph/9403387]

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- G. Schuler publishes his Review in 1994
 - confirms result by J. Kühn & E. Mirkes

[G. Schuler, arXiv:hep-ph/9403387]

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- G. Schuler publishes his Review in 1994 [G. Schuler, arXiv:hep-ph/9403387]
 - confirms result by J. Kühn & E. Mirkes
 - points out issues with negative cross-sections at high energies

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- G. Schuler publishes his Review in 1994 [G. Schuler, arXiv:hep-ph/9403387]
 - confirms result by J. Kühn & E. Mirkes
 - points out issues with negative cross-sections at high energies
 - demonstrates that for some PDF choices there is strong/weak scale dependence

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- G. Schuler publishes his Review in 1994 [G. Schuler, arXiv:hep-ph/9403387]
 - confirms result by J. Kühn & E. Mirkes
 - points out issues with negative cross-sections at high energies
 - demonstrates that for some PDF choices there is strong/weak scale dependence
- M. Mangano comes to same conclusions as G. Schuler in his 1996
 Proceedings [M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- G. Schuler publishes his Review in 1994 [G. Schuler, arXiv:hep-ph/9403387]
 - confirms result by J. Kühn & E. Mirkes
 - points out issues with negative cross-sections at high energies
 - demonstrates that for some PDF choices there is strong/weak scale dependence
- M. Mangano comes to same conclusions as G. Schuler in his 1996
 Proceedings [M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]
- A. Petrelli et al. confirm result by J. Kühn & E. Mirkes in 1997

[A. Petrelli et al., Nucl.Phys. B514 (1998) 245-309]

- J. Kühn & E. Mirkes compute pseudo-scalar toponium cross-section at NLO in 1992 [J. Kühn, E. Mirkes, Phys.Lett. B296 (1992) 425-429]
- G. Schuler publishes his Review in 1994 [G. Schuler, arXiv:hep-ph/9403387]
 - confirms result by J. Kühn & E. Mirkes
 - points out issues with negative cross-sections at high energies
 - demonstrates that for some PDF choices there is strong/weak scale dependence
- M. Mangano comes to same conclusions as G. Schuler in his 1996
 Proceedings [M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]
- A. Petrelli et al. confirm result by J. Kühn & E. Mirkes in 1997

[A. Petrelli et al., Nucl.Phys. B514 (1998) 245-309]

I confirm that everybody above was correct ;-)

• appearance of negative cross-sections for quarkonia at high energies

- appearance of negative cross-sections for quarkonia at high energies
- Schuler identifies two potential sources

- appearance of negative cross-sections for quarkonia at high energies
- Schuler identifies two potential sources
 - small x-behaviour of gluon and sea-quark distributions

- appearance of negative cross-sections for quarkonia at high energies
- Schuler identifies two potential sources
 - small x-behaviour of gluon and sea-quark distributions
 - behaviour of partonic cross-sections away from threshold

[¶]Most of the remarks which follow have already been made by G. Schuler in his '94 review [0]. Schuler at the time had available the full NLO corrections to η production, as well as the leading small-x behaviour of the χ cross sections. It is a pity that those remarks have passed almost unnoticed in the community!

[M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]

Image: Image:

[¶]Most of the remarks which follow have already been made by G. Schuler in his '94 review [0]. Schuler at the time had available the full NLO corrections to η production, as well as the leading small-x behaviour of the χ cross sections. It is a pity that those remarks have passed almost unnoticed in the community!

[M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]

 arrives to similar conclusions that steeper gluon PDF choices will give better results because real corrections become less relevant (see Schuler's table) at high hadronic energies [¶]Most of the remarks which follow have already been made by G. Schuler in his '94 review [0]. Schuler at the time had available the full NLO corrections to η production, as well as the leading small-x behaviour of the χ cross sections. It is a pity that those remarks have passed almost unnoticed in the community!

[M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]

- arrives to similar conclusions that steeper gluon PDF choices will give better results because real corrections become less relevant (see Schuler's table) at high hadronic energies
- confirms that partonic high-energy limit has the general structure,

$$\lim_{z \to 0} \hat{\sigma}_{gg} = 2C_A \frac{\alpha_s}{\pi} \hat{\sigma}_{\text{Born}} \left(\log \frac{M^2}{\mu_F^2} - C_J \right), \tag{3}$$

$$\lim_{z \to 0} \hat{\sigma}_{qg} = C_F \frac{\alpha_s}{\pi} \hat{\sigma}_{\text{Born}} \left(\log \frac{M^2}{\mu_F^2} - C_J \right), \tag{4}$$

where C_J is a process-dependent quantity

• default scale choice is $\mu_R = \mu_F = 2m_c = 3 \text{GeV}$

A 🖓

- default scale choice is $\mu_R = \mu_F = 2m_c = 3$ GeV
- most PDFs are parametrised at a scale close to the mass of the charm quark \rightarrow there is only little evolution of DGLAP equations \rightarrow PDFs will therefore strongly depend on the input of the initial parametrisation [M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]

- default scale choice is $\mu_R = \mu_F = 2m_c = 3$ GeV
- most PDFs are parametrised at a scale close to the mass of the charm quark \rightarrow there is only little evolution of DGLAP equations \rightarrow PDFs will therefore strongly depend on the input of the initial parametrisation [M.L. Mangano, A. Petrelli, Int.J.Mod.Phys. A12 (1997) 3887-3897]
- let's make a comparison with η_b , why do we not encounter negative cross-sections?

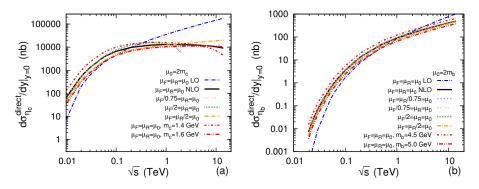


Image: A matrix and a matrix

-

• η_b differential cross-section is much more stable than in case of η_c . The NLO result is the same for both particles. With only the mass increasing from m_c to m_b , we can describe three effects:

- η_b differential cross-section is much more stable than in case of η_c . The NLO result is the same for both particles. With only the mass increasing from m_c to m_b , we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed

- η_b differential cross-section is much more stable than in case of η_c . The NLO result is the same for both particles. With only the mass increasing from m_c to m_b , we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant α_s ; higher scales mean lower coupling \rightarrow QCD corrections become weaker, hence the NLO cross-section will be closer to LO

- η_b differential cross-section is much more stable than in case of η_c . The NLO result is the same for both particles. With only the mass increasing from m_c to m_b , we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant α_s ; higher scales mean lower coupling \rightarrow QCD corrections become weaker, hence the NLO cross-section will be closer to LO
 - the third effect is evolution of the PDFs from the scale of η_c to η_b . Evolution leads to steeper gluon PDFs, hence real corrections are further surpressed

- η_b differential cross-section is much more stable than in case of η_c . The NLO result is the same for both particles. With only the mass increasing from m_c to m_b , we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant α_s ; higher scales mean lower coupling \rightarrow QCD corrections become weaker, hence the NLO cross-section will be closer to LO
 - the third effect is evolution of the PDFs from the scale of η_c to η_b . Evolution leads to steeper gluon PDFs, hence real corrections are further surpressed
 - \rightarrow essentially ensuring the positivity of the η_{b} cross-section

- η_b differential cross-section is much more stable than in case of η_c . The NLO result is the same for both particles. With only the mass increasing from m_c to m_b , we can describe three effects:
 - the dependence of the cross-section on \sqrt{s} is now stretched out by the ratio the mass changed
 - the rescaling of strong coupling constant α_s ; higher scales mean lower coupling \rightarrow QCD corrections become weaker, hence the NLO cross-section will be closer to LO
 - the third effect is evolution of the PDFs from the scale of η_c to η_b . Evolution leads to steeper gluon PDFs, hence real corrections are further surpressed
 - ightarrow essentially ensuring the positivity of the η_b cross-section
 - note however that the NLO result start to deviate from LO at large \sqrt{s}

- What are the potential sources for negative cross-sections?:
 - is it due to a failure of theoretical models (NRQCD etc.) for quarkonia?
 → No, it is a more general problem; see open c̄ production
 - is it due to the truncation of fixed order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross sections? \rightarrow No, the situation at higher orders will be worse; see open $c\bar{c}$ production
 - is it due to collinear factorisation? Do we need to include TMD effects? (see TMD side)
 - is it due to unfortunate choices of renormalisation μ_R and factorisation μ_F scales? \rightarrow No, since the η_c is a low scale process, it depends crucially on the PDF parametrisation; no physical reason to go to artificially large scales
 - or is it due to Parton Distribution Functions (PDFs)?

- What are the potential sources for negative cross-sections?:
 - is it due to a failure of theoretical models (NRQCD etc.) for quarkonia?
 → No, it is a more general problem; see open c̄ production
 - is it due to the truncation of fixed order calculations? Do we need to go to higher orders (N2LO, N3LO, ...) to solve the issue of negative cross sections? \rightarrow No, the situation at higher orders will be worse; see open $c\bar{c}$ production
 - is it due to collinear factorisation? Do we need to include TMD effects? (see TMD side)
 - is it due to unfortunate choices of renormalisation μ_R and factorisation μ_F scales? \rightarrow No, since the η_c is a low scale process, it depends crucially on the PDF parametrisation; no physical reason to go to artificially large scales
 - or is it due to Parton Distribution Functions (PDFs)?

Quarkonia & PDFs: Results

• as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118
 - MRS(A')

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118
 - MRS(A')
 - MRS(G)

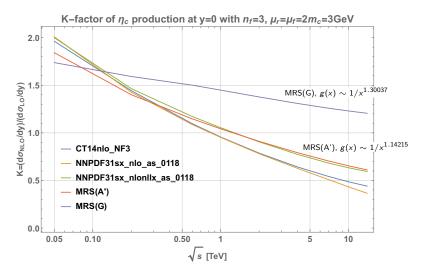
- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118
 - MRS(A')
 - MRS(G)
- in order to discriminate between the PDF choices we will use two different scale configurations:

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118
 - MRS(A')
 - MRS(G)
- in order to discriminate between the PDF choices we will use two different scale configurations:
 - $\mu_R = \mu_F = 2m_c = 3 \text{GeV}$ default scale choice

- as pointed out by Schuler and Mangano, different PDF parametrisations can give very different result
- we will put this into practice and compute the K-factor for 5 different PDF choices at y=0. We will plot the energy-dependence of the K-factor for the PDFs:
 - CT14nlo_NF3
 - NNPDF31sx_nlo_as_0118
 - NNPDF31sx_nlonllx_as_0118
 - MRS(A')
 - MRS(G)
- in order to discriminate between the PDF choices we will use two different scale configurations:
 - $\mu_R = \mu_F = 2m_c = 3 \text{GeV}$ default scale choice
 - $\mu_R = m_c = 1.5 \text{GeV}, \ \mu_F = 2m_c = 3 \text{GeV}$

- lower renormalisation choice leads to larger $\alpha_s \rightarrow$ real emission contributions become more important; the objective is to see the impact of the PDFs on the real corrections

K-factor at y = 0 - $\mu_R = \mu_F = 2m_c = 3$ GeV



K-factor at y=0 as a function of energy and with different PDF choices. Default scale choice used $\mu_R = \mu_F = 2m_c = 3$ GeV.

Melih A. Ozcelik (IPNO)

LightCone 2019 21 / 37

K-factor at y = 0 - $\mu_R = m_c = 1.5 \text{GeV}, \mu_F = 2m_c = 3 \text{GeV}$



K-factor at y=0 as a function of energy and with different PDF choices. Alternative scale choice used $\mu_R = m_c = 1.5 \text{GeV}$, $\mu_F = 2m_c = 3 \text{GeV}$.

Melih A. Ozcelik (IPNO)

LightCone 2019 22 / 37

 use {NNPDF31_nlo_as_0118, NNPDF31sx_nlo_as_0118, NNPDF31sx_nlonllx_as_0118} sets and run over 100 Replicas

- use {NNPDF31_nlo_as_0118, NNPDF31sx_nlo_as_0118, NNPDF31sx_nlonllx_as_0118} sets and run over 100 Replicas
- difference between NNPDF31_nlo_as_0118 and NNPDF31sx_nlo_as_0118 is that the latter one with small x extension has been probed at a minimally lower scale Q such that in the Replica generation the 2.7GeV² bin has been taken into account which turns out to be crucial

- use {NNPDF31_nlo_as_0118, NNPDF31sx_nlo_as_0118, NNPDF31sx_nlonllx_as_0118} sets and run over 100 Replicas
- difference between NNPDF31_nlo_as_0118 and NNPDF31sx_nlo_as_0118 is that the latter one with small x extension has been probed at a minimally lower scale Q such that in the Replica generation the 2.7GeV² bin has been taken into account which turns out to be crucial
- difference between NNPDF31sx_nlo_as_0118 and NNPDF31sx_nlonllx_as_0118 is that in the latter one NLL contributions are slowing down DGLAP equations, such that when it is fitted at higher μ_f to data, the back-evolution to initial scale will lead to steeper gluon parametrisations

- use {NNPDF31_nlo_as_0118, NNPDF31sx_nlo_as_0118, NNPDF31sx_nlonllx_as_0118} sets and run over 100 Replicas
- difference between NNPDF31_nlo_as_0118 and NNPDF31sx_nlo_as_0118 is that the latter one with small x extension has been probed at a minimally lower scale Q such that in the Replica generation the 2.7GeV² bin has been taken into account which turns out to be crucial
- difference between NNPDF31sx_nlo_as_0118 and NNPDF31sx_nlonllx_as_0118 is that in the latter one NLL contributions are slowing down DGLAP equations, such that when it is fitted at higher μ_f to data, the back-evolution to initial scale will lead to steeper gluon parametrisations
- expect very large *K*-factor uncertainty associated to normal NNPDF31 PDF choice and improvements for sx and sxNLL PDF choices

NNPDF31 100 Replicas - Uncertainty of K-factor

- use {NNPDF31_nlo_as_0118, NNPDF31sx_nlo_as_0118, NNPDF31sx_nlonllx_as_0118} sets and run over 100 Replicas
- difference between NNPDF31_nlo_as_0118 and NNPDF31sx_nlo_as_0118 is that the latter one with small x extension has been probed at a minimally lower scale Q such that in the Replica generation the 2.7GeV² bin has been taken into account which turns out to be crucial
- difference between NNPDF31sx_nlo_as_0118 and NNPDF31sx_nlonllx_as_0118 is that in the latter one NLL contributions are slowing down DGLAP equations, such that when it is fitted at higher μ_f to data, the back-evolution to initial scale will lead to steeper gluon parametrisations
- expect very large *K*-factor uncertainty associated to normal NNPDF31 PDF choice and improvements for sx and sxNLL PDF choices
- we will try with two different scale choices as before, set y = 0 and use $\sqrt{s} = 7$ TeV and 14 TeV

K-factor results -
$$y = 0$$
 & $\sqrt{s} = 7$ TeV - 100 Replicas

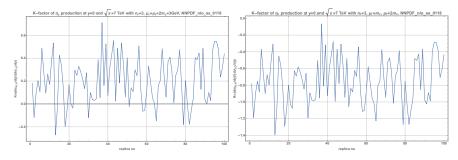


Figure: Strong variation of *K*-factor over replica number of NNPDF31_nlo_as_0118 (y=0, $\sqrt{s} = 7$ TeV, default/alternative scale choice)

default ($\mu_R = \mu_F = 2m_c = 3$ GeV): $\rightarrow K = 0.2 \pm 0.2$ alternative ($\mu_R = m_c = 1.5$ GeV, $\mu_F = 2m_c = 3$ GeV): $\rightarrow K = -0.8 \pm 0.3$

.⊒ . ►

	$\sqrt{s} = 7$ TeV			$\sqrt{s} = 14 \text{ TeV}$
PDF choice	y = 0	y = 1	<i>y</i> = 2	<i>y</i> = 0
MRS(G)	1.26	1.27	1.29	1.21
MRS(A')	0.70	0.72	0.76	0.61
sxNLL-NNPDF31	0.68±0.06	$0.71{\pm}0.06$	0.79±0.08	0.59±0.09
(Replica)				
CT14nlo_NF3	0.54	0.57	0.65	0.44
(central value)				
sx-NNPDF31	0.50±0.09	$0.51{\pm}0.11$	$0.59{\pm}0.16$	0.36±0.15
(Replica)				
normal-NNPDF31	0.20±0.21	0.2±0.4	0.2±1.1	-0.1 ± 0.4
(Replica)				

3

Improve K-factor with constraints in Quarkonia

• can we improve the *K*-factor for NNPDF31 PDF sets by applying constraints?

- can we improve the *K*-factor for NNPDF31 PDF sets by applying constraints?
- strategy is to weight the Replicas based on their *K*-factors with a Gaussian distribution in a given set of results.

Improve K-factor with constraints in Quarkonia

$$\chi_{i}^{2} = (1 - K_{i})^{2},$$

$$w_{i} = \frac{e^{-\frac{\chi_{i}^{2}}{2\sigma^{2}}}}{\frac{1}{N_{\text{rep}}} \sum_{j=1}^{N_{\text{rep}}} e^{-\frac{\chi_{j}^{2}}{2\sigma^{2}}}}$$
(6)

with

$$\sigma = 0.3,\tag{7}$$

such that we are focusing on K-factors in the range $K=1\pm0.3$

- can we improve the *K*-factor for NNPDF31 PDF sets by applying constraints?
- strategy is to weight the replicas based on their K-factors with a Gaussian distribution in a given set of results.
 → essentially assigning weights close to 0 for Replicas that gave negative K-factors

- can we improve the *K*-factor for NNPDF31 PDF sets by applying constraints?
- strategy is to weight the replicas based on their K-factors with a Gaussian distribution in a given set of results.
 → essentially assigning weights close to 0 for Replicas that gave negative K-factors
- we will use the results for y = 0 and $\sqrt{s} = 14$ TeV with default scale choice

	$\sqrt{s} = 7$ TeV			$\sqrt{s} = 14 \text{ TeV}$
PDF choice	<i>y</i> = 0	y = 1	<i>y</i> = 2	<i>y</i> = 0
MRS(G)	1.26	1.27	1.29	1.21
sxNLL-NNPDF31	0.70±0.06	0.73±0.06	$0.81{\pm}0.08$	0.62±0.08
(Replica)				
(reweighted)				
MRS(A')	0.70	0.72	0.76	0.61
sx-NNPDF31	0.56±0.09	0.58±0.08	$0.66{\pm}0.11$	0.45±0.10
(Replica)				
(reweighted)				
CT14nlo_NF3	0.54	0.57	0.65	0.44
(central value)				
normal-NNPDF31	0.50±0.12	$0.52{\pm}0.11$	$0.60{\pm}0.10$	0.40±0.14
(Replica)				
(reweighted)				

• CT14nlo pdf set has 1 central member (f_0) and 28 eigenset doublets $(f^+ \text{ and } f^-)$

- CT14nlo pdf set has 1 central member (f_0) and 28 eigenset doublets $(f^+ \text{ and } f^-)$
- the uncertainty is determined in the Hessian way w.r.t. the central value

- CT14nlo pdf set has 1 central member (f_0) and 28 eigenset doublets $(f^+ \text{ and } f^-)$
- the uncertainty is determined in the Hessian way w.r.t. the central value
- generate Replicas f_k from eigensets

$$f_k = f_0 + \sum_{i}^{N} \frac{f^+ - f^-}{2} R_{ki},$$
(8)

where R_{ki} are random numbers from a normalised Gaussian distribution with uniform variance centered at the origin

- CT14nlo pdf set has 1 central member (f_0) and 28 eigenset doublets $(f^+ \text{ and } f^-)$
- the uncertainty is determined in the Hessian way w.r.t. the central value
- generate Replicas f_k from eigensets

$$f_k = f_0 + \sum_{i}^{N} \frac{f^+ - f^-}{2} R_{ki},$$
(8)

where R_{ki} are random numbers from a normalised Gaussian distribution with uniform variance centered at the origin

• let's generate 10000 Replicas...

 we generate 10000 Replicas from the 57 members and we obtain for the default and alternative scale choices the following,

	$\sqrt{s}=7$ TeV			$\sqrt{s} = 14 \text{ TeV}$
PDF choice	y = 0	y = 1	y = 2	<i>y</i> = 0
CT14nlo (Replica)	0.45±0.28	0.4±0.9	-1±127	0.3±0.5
(default)				
CT14nlo (Replica)	-0.4±0.4	-0.5±1.2	-3±172	-0.6±0.6
(alternative)				

 we generate 10000 Replicas from the 57 members and we obtain for the default and alternative scale choices the following,

	$\sqrt{s}=7$ TeV			$\sqrt{s} = 14$ TeV
PDF choice	y = 0	y = 1	y = 2	<i>y</i> = 0
CT14nlo (Replica)	0.45±0.28	0.4±0.9	-1±127	0.3±0.5
(default)				
CT14nlo (Replica)	-0.4±0.4	-0.5±1.2	-3±172	-0.6±0.6
(alternative)				

 \rightarrow need to re-weight Replicas!

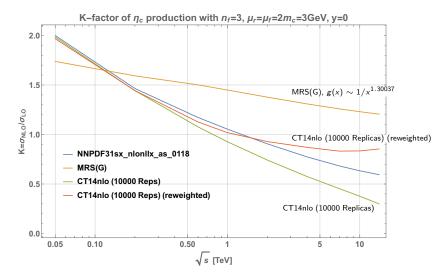
 we will make a reweightment based on the results for y = 2 at the alternative scale to distinguish the good Replicas from the bad Replicas

- we will make a reweightment based on the results for y = 2 at the alternative scale to distinguish the good Replicas from the bad Replicas
- as before we will use the Gaussian distribution to re-weight with $\chi_i^2 = (1 K_i)^2$ and $\sigma = 0.3$

default scale choice,

	$\sqrt{s} = 7$ TeV			$\sqrt{s} = 14 \text{ TeV}$
PDF choice	<i>y</i> = 0	y = 1	<i>y</i> = 2	<i>y</i> = 0
CT14nlo (Replicas)	$0.45 {\pm} 0.28$	0.4±0.9	-1±127	0.3±0.5
(default)				
CT14nlo (Replicas)	0.83±0.12	0.9±0.3	$1.07{\pm}0.11$	0.85±0.14
(default)				
(reweighted)				

K-factor at y = 0 - $\mu_R = \mu_F = 2m_c = 3$ GeV



K-factor at y=0 as a function of energy and with different PDF choices. Default scale choice used $\mu_R = \mu_F = 2m_c = 3$ GeV.

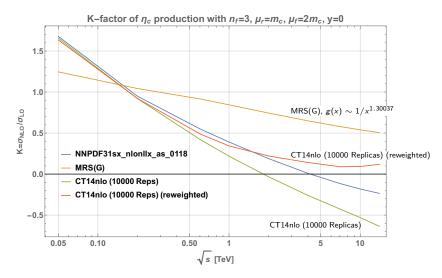
Melih A. Ozcelik (IPNO)

LightCone 2019 34 / 37

alternative scale choice,

	$\sqrt{s} = 7$ TeV			$\sqrt{s} = 14 \text{ TeV}$
PDF choice	<i>y</i> = 0	y = 1	<i>y</i> = 2	<i>y</i> = 0
CT14nlo (Replicas)	-0.4±0.4	-0.5±1.2	-3±172	-0.6±0.6
(alternative)				
CT14nlo (Replicas)	0.09±0.16	0.2±0.4	0.41±0.15	0.12±0.19
(alternative)				
(reweighted)				

K-factor at y = 0 - $\mu_R = m_c = 1.5 \text{GeV}, \mu_F = 2m_c = 3 \text{GeV}$



K-factor at y=0 as a function of energy and with different PDF choices. Alternative scale choice used $\mu_R = m_c = 1.5 \text{GeV}$, $\mu_F = 2m_c = 3 \text{GeV}$.

Melih A. Ozcelik (IPNO)

LightCone 2019 36 / 37

• combine weighting by using results at different energies \sqrt{s} and rapidities y

- combine weighting by using results at different energies \sqrt{s} and rapidities y
- further constraints for PDFs that we can take from Quarkonium Physics are

- combine weighting by using results at different energies \sqrt{s} and rapidities y
- further constraints for PDFs that we can take from Quarkonium Physics are
 - at fixed rapidity, the differential cross-section must increase with \sqrt{s} energy

- combine weighting by using results at different energies \sqrt{s} and rapidities y
- further constraints for PDFs that we can take from Quarkonium Physics are
 - at fixed rapidity, the differential cross-section must increase with \sqrt{s} energy
 - at fixed \sqrt{s} energy, the differential cross-section should decrease with increasing rapidity; generically it should follow the shape of the leading order (2 \rightarrow 1 process)

- combine weighting by using results at different energies \sqrt{s} and rapidities y
- further constraints for PDFs that we can take from Quarkonium Physics are
 - at fixed rapidity, the differential cross-section must increase with \sqrt{s} energy
 - at fixed \sqrt{s} energy, the differential cross-section should decrease with increasing rapidity; generically it should follow the shape of the leading order (2 \rightarrow 1 process)

 \rightarrow work on-going

Thank you for attention!

Backup

2

TMD - Transverse Momentum Distribution

$$\sigma \propto H \times \mathcal{C}[f_1^g f_1^g] \qquad (9)$$

$$\mathcal{C}[f_1^g f_1^g] = \int \frac{d^2 \vec{b}_T}{(2\pi)^2} e^{i \vec{b}_T \cdot \vec{q}_T} \tilde{f}_1^g \left(x_1, \vec{b}_T; \zeta, \mu\right) \tilde{f}_1^g \left(x_2, \vec{b}_T; \zeta, \mu\right)$$

$$\tilde{f}_1^{g/A} \left(x, \vec{b}_T; \zeta, \mu\right) = \sum_{j=q,\bar{q},g} \int_x^1 \frac{d\tilde{x}}{\tilde{x}} \tilde{C}_{g/j} \left(\tilde{x}, \vec{b}_T; \zeta, \mu\right) f_{j/A} \left(x/\tilde{x}; \mu\right)$$

$$\tilde{C}_{g/g} = \delta(1-x) + \frac{\alpha_s}{2\pi} \left[C_A \delta(1-x) \left(-\frac{1}{2} L_T^2 + L_T \ln \frac{\mu^2}{\zeta} - \frac{\pi^2}{12} \right) - L_T \left(P_{g/g} - \delta(1-x) \frac{\beta_0}{2} \right) \right]$$

$$\tilde{C}_{g/q} = \frac{\alpha_s}{2\pi} \left[-L_T P_{g/q} + C_F x \right]$$

$$L_T = \ln \frac{\mu^2 b_T^2}{4e^{-2\gamma_E}} \qquad (10)$$

• TMD factorisation is more universal than collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $\mathcal{C}[f_1^g f_1^g] < 0$

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $\mathcal{C}[f_1^g f_1^g] < 0$
 - \rightarrow constrain PDFs such that $\mathcal{C}[f_1^g f_1^g] > 0$ at η_c scales

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $\mathcal{C}[f_1^g f_1^g] < 0$
 - \rightarrow constrain PDFs such that $\mathcal{C}[f_1^g f_1^g] > 0$ at η_c scales
- re-weighting PDFs with similar criteria

TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $\mathcal{C}[f_1^g f_1^g] < 0$
 - \rightarrow constrain PDFs such that $\mathcal{C}[f_1^g f_1^g] > 0$ at η_c scales
- re-weighting PDFs with similar criteria
- if the re-weighted Replicas obtained by imposing $d\sigma/dy > 0$ (+ good shape behaviour) in collinear factorisation more or less coincide with $C[f_1^g f_1^g]$, this would mean that we are on the right track to use quarkonium as quantitative gluon probes

TMD vs. collinear factorisation

- TMD factorisation is more universal than collinear factorisation
 - leading-order process plus virtual corrections are factorised into hard part *H* (*process-dependent*)
 - real and mixed real-virtual corrections are included inside the TMDPDFs (*process-independent*)
- with positivity constraint $d\sigma/dy > 0$, we have that $C[f_1^g f_1^g] > 0$ always (universal property)!
 - however we encounter at η_c scales, that $\mathcal{C}[f_1^g f_1^g] < 0$
 - \rightarrow constrain PDFs such that $\mathcal{C}[f_1^g f_1^g] > 0$ at η_c scales
- re-weighting PDFs with similar criteria
- if the re-weighted Replicas obtained by imposing $d\sigma/dy > 0$ (+ good shape behaviour) in collinear factorisation more or less coincide with $C[f_1^g f_1^g]$, this would mean that we are on the right track to use quarkonium as quantitative gluon probes
 - \rightarrow work on-going

• Colour-Evaporation Model

- quark and anti-quark colours are summed up at amplitude squared level (evaporation)
- no spin-projection
- Colour-Octet Model
 - quark and anti-quark pair are in color-octet state
 - heavy quark spins projected on final bound state
 - higher Fock states in NRQCD, higher v-order

Colour-Singlet Model

- quark and anti-quark pair are in color-singlet state
- heavy quark spins projected on final bound state
- leading Fock state in NRQCD

gluon-gluon channel

$$\begin{aligned} \hat{\sigma}_{gg}(s,\hat{s},\mu_{R},\mu_{F}) &= \frac{\alpha_{s}^{2}(\mu_{R})\pi^{2}}{96m_{c}^{5}}|R(0)|^{2}\delta(1-z) \\ &+ \frac{\alpha_{s}^{3}(\mu_{R})\pi}{1152m_{c}^{5}}|R(0)|^{2}\left[\left(-44+7\pi^{2}+54\log\left(\frac{\mu_{R}^{2}}{\mu_{F}^{2}}\right)\right) \\ &+ 72\log\left(1-\frac{4m_{c}^{2}}{s}\right)\left(\log\left(1-\frac{4m_{c}^{2}}{s}\right)-\log\left(\frac{\mu_{F}^{2}}{4m_{c}^{2}}\right)\right)\right)\delta(1-z) \\ &+ 6\left(24\left(\frac{\log\left(1-z\right)}{1-z}\right)_{\rho}\left(1-(1-z)z\right)^{2} \\ &+ 12\left(\frac{1}{1-z}\right)_{\rho}\frac{\log\left(z\right)}{(1-z)(1+z)^{3}}\left(1-z^{2}\left(5+z\left(2+z+3z^{3}+2z^{4}\right)\right)\right) \\ &- \left(\frac{1}{1-z}\right)_{\rho}\frac{1}{(1+z)^{2}}\left(12+z^{2}\left(23+z\left(24+2z+11z^{3}\right)\right) \\ &+ 12\left(1+z^{3}\right)^{2}\log\left(\frac{z\mu_{F}^{2}}{4m_{c}^{2}}\right)\right)\right], \text{ where } z = 4m_{c}^{2}/\hat{s} \text{ and } \rho = 4m_{c}^{2}/s \end{aligned}$$

 $\exists \rightarrow$

A B > 4
 B > 4
 B

quark-antiquark channel

$$\hat{\sigma}_{q\bar{q}}(\hat{s},\mu_R) = \frac{16\alpha_s^3(\mu_R)\pi}{81m_c} |R(0)|^2 \frac{(\hat{s}-4m_c^2)}{\hat{s}^3}$$
(12)

quark-gluon channel

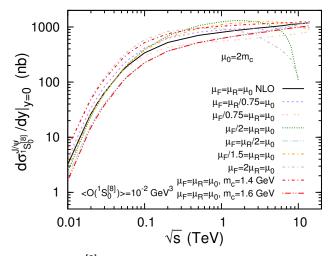
$$\begin{aligned} \hat{\sigma}_{qg}(\hat{s},\mu_{R},\mu_{F}) &= \frac{\alpha_{s}^{3}(\mu_{R})\pi}{72m_{c}^{5}\hat{s}^{2}}|R(0)|^{2}\left(8m_{c}^{4}+4m_{c}^{2}\hat{s}-\hat{s}^{2}\right. \\ &+ 2\left(8m_{c}^{4}-4m_{c}^{2}\hat{s}+\hat{s}^{2}\right)\log\left(1-\frac{4m_{c}^{2}}{\hat{s}}\right) \\ &+ \hat{s}\left(-4m_{c}^{2}+\hat{s}\right)\log\left(\frac{4m_{c}^{2}}{\hat{s}}\right) \\ &- \left(8m_{c}^{4}-4m_{c}^{2}\hat{s}+\hat{s}^{2}\right)\log\left(\frac{\mu_{F}^{2}}{\hat{s}}\right) \end{aligned}$$
(13)

∃ →

E ▶.

2

problem of negative cross-sections - J/ψ , ${}^1S_0^{[8]}$ at NLO



comparison of $J/\psi \ ^1S_0^{[8]}$ differential cross-section at NLO with different choices of μ_R and μ_F with CTEQ6M [Y. Feng, J.-P. Lansberg, J.X. Wang, Eur.Phys.J. C75 (2015)

Melih A. Ozcelik (IPNO)

LightCone 2019 45 / 37

- let's define $z=M^2/\hat{s}$ and $au_0=M^2/s$
- LO partonic cross-section and virtual corrections $(2 \rightarrow 1 \text{ process})$ have $\delta(1-z)$ function while real corrections $(2 \rightarrow 2)$ are complicated functions of z
- negative contributions come from real corrections which have interference terms
- idea is to use simple toy-models for gluon PDFs and convolute with partonic cross-section; different *z*-terms will contribute differently at hadronic level

Schuler 1994 - two toymodels - table partonic vs. hadronic

	xg(x) ightarrow 1	$xg(x) ightarrow 1/\sqrt{x}$
$\hat{\sigma}_{\rm gg}(z,M^2)$	$\sigma_{{}_{\operatorname{pp}}}(au_{0},M^{2}) \stackrel{ au_{0} ightarrow 0}{ ightarrow}$	
$\delta(1-z)$	$\ln\left(\frac{1}{\tau_0}\right)$	$\frac{1}{\sqrt{\tau_0}} \ln\left(\frac{1}{\tau_0}\right)$
z^k	$\frac{1}{k} \ln\left(\frac{1}{\tau_0}\right)$	$\frac{2}{(2k+1)\sqrt{ au_0}} \ln\left(\frac{1}{ au_0}\right)$
1	$\frac{1}{2} \ln^2\left(\frac{1}{\tau_0}\right)$	$\frac{2}{\sqrt{\tau_0}} \ln\left(\frac{1}{\tau_0}\right)$
$\ln^k\left(\frac{1}{z}\right)$	$\frac{1}{(k+1)(k+2)} \ln^{k+2} \left(\frac{1}{\tau_0}\right)$	$\frac{k! 2^{k+1}}{\sqrt{\tau_0}} \ln\left(\frac{1}{\tau_0}\right)$

Asymptotic ($\tau_0 = M^2/s \rightarrow 0$) behaviour of the proton-proton or proton-antiproton cross section for various forms of the gluon-gluon subprocess ($z = M^2/\hat{s} = \tau_0/\tau$) and two extreme choices of the gluon distribution function. Taken from G. Schuler, Review, 1994

toymodel g(x) = 1/x: real corrections dominate at high energies; toymodel $g(x) = 1/x^{1.5}$: all contributions have same energy scaling partonic cross-section away from threshold, z
ightarrow 0

$$\lim_{z \to 0} \hat{\sigma}_{gg} = \frac{\alpha_s^3(\mu)\pi}{16m_c^5} |R(0)|^2 \left(\log\left(\frac{4m_c^2}{\mu_F^2}\right) - 1 \right),$$
(14)
$$\lim_{z \to 0} \hat{\sigma}_{q\bar{q}} = 0,$$
(15)
$$\lim_{z \to 0} \hat{\sigma}_{qg} = \frac{\alpha_s^3(\mu)\pi}{72m_c^5} |R(0)|^2 \left(\log\left(\frac{4m_c^2}{\mu_F^2}\right) - 1 \right)$$
(16)

partonic cross-section away from threshold, z
ightarrow 0

•
$$\mu_F = m_c$$

$$\lim_{z \to 0} \hat{\sigma}_{gg} = \frac{\alpha_s^3(\mu)\pi}{16m_c^5} |R(0)|^2 \left(\log\left(4\right) - 1\right) = 0.2 * \hat{\sigma}_{gg,LO}, \tag{17}$$

•
$$\mu_F = 2m_c$$

$$\lim_{z \to 0} \hat{\sigma}_{gg} = \frac{\alpha_s^3(\mu)\pi}{16m_c^5} |R(0)|^2 (-1) = -0.5 * \hat{\sigma}_{gg,LO},$$
(18)

- toy model 1 PDF with $f_{g/p}(x) = 1/x$
 - dependence of hadronic cross-section on $\mu_{\rm F}$
 - for $\mu_F > m_c$, hadronic cross-section is negative
 - for $\mu_F < m_c$, hadronic cross-section is positive
- toy model 2 PDF with $f_{g/p}(x) = 1/x^{1.5}$
 - weak dependence of hadronic cross-section on $\mu_{\rm F}$
 - cross-section always positive (independent of choice of μ_F)
- similar behaviour for *qg* channel at high energies because of same asymptotic limit as in *gg* channel apart from global factor

high energy behaviour - partonic cross-section

- for non-steep PDF choices, the high-energy hadronic limit is governed by the high-energy partonic limit \rightarrow strong dependence on factorisation scale μ_F
- some values for C_J:
 - $C_J = 1$ for pseudo-scalar quarkonia $\eta_{c/b/t}$
 - $C_J = 43/27$ for $\chi_{c/b,0}$
 - $C_J = 53/36$ for $\chi_{c/b,2}$
 - $C_J = 11/12 + \log z$ for Higgs (in infinite-top quark mass limit)
- as an aside note, ratio between *qg* and *gg* channel in high-energy partonic limit is process-independent (same for Quarkonia and Higgs Physics)

$$\lim_{z \to 0} \frac{\hat{\sigma}_{qg}}{\hat{\sigma}_{gg}} = \frac{C_F}{2C_A} = \frac{2}{9}$$
(19)