

Contribution ID: 55

Type: **not specified**

$\pi\pi$ scattering on a renormalized Hamiltonian matrix

Monday, 16 September 2019 15:35 (25 minutes)

A Wilsonian approach to $\pi\pi$ scattering based in the Glazek-Wilson Similarity Renormalization Group for Hamiltonian is analyzed in the $JI = 00, 11$ and 20 channels in momentum space up to a maximal CM energy of $\sqrt{s} = 1.4$ GeV. We identify the Hamiltonian by means of the 3D reduction of the Bethe-Salpeter equation in the Kadyshevsky scheme. We propose a new method to integrate the SRG equations based in the Crank-Nicolson algorithm with a single step finite difference so that sospctrality is preserved at any step of the calculations. We discuss issues on the high momentum tails present in the fitted interactions hampering calculations.

Author: GOMEZ-ROCHA, Maria (University of Granada)

Co-author: RUIZ ARRIOLA, Enrique (Universidad de Granada)

Presenter: GOMEZ-ROCHA, Maria (University of Granada)

Session Classification: Parallel 1

Track Classification: Effective field theories