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Part 1:
Definitions and Properties
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Generalized Parton Distributions

Generalized Parton Distributions (GPDs):

I are defined according to a non-local matrix element,
I depend on three variables (x , ξ, t) and a scale µF ,
I can split in terms of quark flavours and gluon contributions,
I can be related to the 2+1D parton number density when ξ → 0.
I can be related to the Energy-Momentum tensor (GFF) through their

n = 1 Mellin moments
I are univeral, i.e. are related to the Compton Form Factors (CFFs) of

various exclusive processes through convolutions

Bottom line
GPDs offer a priori an excellent framework

for studying emerging phenomena in hadron physics
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4 GPDs without helicity transfer + 4 helicity flip GPDs
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Pion GPD in Impact
parameter space from:
CM et al., Phys. Lett. B741,
190-196 (2015)

I can be related to the Energy-Momentum tensor (GFF) through their
n = 1 Mellin moments

I are univeral, i.e. are related to the Compton Form Factors (CFFs) of
various exclusive processes through convolutions

Bottom line
GPDs offer a priori an excellent framework

for studying emerging phenomena in hadron physics

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 3 / 25



Generalized Parton Distributions

Generalized Parton Distributions (GPDs):
I are defined according to a non-local matrix element,
I depend on three variables (x , ξ, t) and a scale µF ,
I can split in terms of quark flavours and gluon contributions,
I can be related to the 2+1D parton number density when ξ → 0.
I can be related to the Energy-Momentum tensor (GFF) through their

n = 1 Mellin moments
X. Ji, PRL 78, 610–613 (1997)

X. Ji, J. Phys. G24, 1181–1205 (1998)

I are univeral, i.e. are related to the Compton Form Factors (CFFs) of
various exclusive processes through convolutions

Bottom line
GPDs offer a priori an excellent framework

for studying emerging phenomena in hadron physics

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 3 / 25



Generalized Parton Distributions

Generalized Parton Distributions (GPDs):
I are defined according to a non-local matrix element,
I depend on three variables (x , ξ, t) and a scale µF ,
I can split in terms of quark flavours and gluon contributions,
I can be related to the 2+1D parton number density when ξ → 0.
I can be related to the Energy-Momentum tensor (GFF) through their

n = 1 Mellin moments
I are univeral, i.e. are related to the Compton Form Factors (CFFs) of

various exclusive processes through convolutions

H(ξ, t) =

∫
dx C (x , ξ)H(x , ξ, t)

−q2 = Q2

q′
e−(k)

p1 = P − ∆
2

p2 = P + ∆
2GPDs

e−(k − q)

(x + ξ)P+ (x− ξ)P+

p1 = P − ∆
2

p2 = P + ∆
2GPDs

DA
−q2 = Q2

Bottom line
GPDs offer a priori an excellent framework

for studying emerging phenomena in hadron physics

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 3 / 25



Generalized Parton Distributions

Generalized Parton Distributions (GPDs):
I are defined according to a non-local matrix element,
I depend on three variables (x , ξ, t) and a scale µF ,
I can split in terms of quark flavours and gluon contributions,
I can be related to the 2+1D parton number density when ξ → 0.
I can be related to the Energy-Momentum tensor (GFF) through their

n = 1 Mellin moments
I are univeral, i.e. are related to the Compton Form Factors (CFFs) of

various exclusive processes through convolutions

Bottom line
GPDs offer a priori an excellent framework

for studying emerging phenomena in hadron physics

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 3 / 25



Properties

Polynomiality Property:

∫ 1

−1
dx xmHq(x , ξ, t) =

[m
2 ]∑

j=0

ξ2jCq
2j(t) + mod(m, 2)ξm+1Cq

m+1(t)

Lorentz Covariance

Positivity property:
Positivity of Hilbert space norm

Support property:
Relativistic quantum mechanics

Soft pion theorem (pion GPDs only)
Axial-Vector WTI

Problem
There is no model (until now) fulfilling a priori all these constraints.
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Polynomiality Property:
Lorentz Covariance

Positivity property:
Positivity of Hilbert space norm

Support property:
x ∈ [−1; 1]

M. Diehl and T. Gousset, Phys. Lett. B428, 359 (1998)

Relativistic quantum mechanics

Soft pion theorem (pion GPDs only)
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Polynomiality Property:
Lorentz Covariance

Positivity property:
Positivity of Hilbert space norm

Support property:
Relativistic quantum mechanics

Soft pion theorem (pion GPDs only)
M.V. Polyakov, Nucl. Phys. B555, 231 (1999)

CM et al., Phys. Lett. B741, 190 (2015)

Axial-Vector WTI

Problem
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Classical modelling techniques I
Double Distributions

GPDs are related to Double Distributions (DDs) through:

H(x , ξ, t) =

∫
Ω

dβdα (F (β, α, t) + ξG (β, α, t)) δ (x − β − ξα)

The Dirac δ insures that the polynomiality is fulfilled,
independently of our choice of F and G

DDs have been widely used for phenomenological purposes (VGG,
GK...)
They also appear naturally in covariant modelling attempts

Positivity property is not guaranteed, and may be violated.
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Classical modelling techniques II
LFWFs approach to GPDs

On the light front, hadronic states can be expanded on a Fock basis:

|P, π〉 ∝
∑
β

Φqq̄
β |qq̄〉+

∑
β

Φqq̄,qq̄
β |qq̄, qq̄〉+ . . .

|P,N〉 ∝
∑
β

Φqqq
β |qqq〉+

∑
β

Φqqq,qq̄
β |qqq, qq̄〉+ . . .

Non-perturbative physics is contained within the N-particle LFWFs ΦN

This formalism allows to recover the probabilistic picture of
non-relativistic quantum mechanics

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 6 / 25



Classical modelling techniques II
LFWFs approach to GPDs

On the light front, hadronic states can be expanded on a Fock basis:

|P, π〉 ∝
∑
β

Φqq̄
β |qq̄〉+

∑
β

Φqq̄,qq̄
β |qq̄, qq̄〉+ . . .

|P,N〉 ∝
∑
β

Φqqq
β |qqq〉+

∑
β

Φqqq,qq̄
β |qqq, qq̄〉+ . . .

Non-perturbative physics is contained within the N-particle LFWFs ΦN

This formalism allows to recover the probabilistic picture of
non-relativistic quantum mechanics

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 6 / 25



Classical modelling techniques II
LFWFs approach to GPDs

On the light front, hadronic states can be expanded on a Fock basis:

|P, π〉 ∝
∑
β

Φqq̄
β |qq̄〉+

∑
β

Φqq̄,qq̄
β |qq̄, qq̄〉+ . . .

|P,N〉 ∝
∑
β

Φqqq
β |qqq〉+

∑
β

Φqqq,qq̄
β |qqq, qq̄〉+ . . .

Non-perturbative physics is contained within the N-particle LFWFs ΦN

This formalism allows to recover the probabilistic picture of
non-relativistic quantum mechanics

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 6 / 25



Classical modelling techniques II
LFWFs approach to GPDs

On the light front, hadronic states can be expanded on a Fock basis

DGLAP: |x | > |ξ|

Same N LFWFs
No ambiguity

ERBL: |x | < |ξ|

N and N + 2 partons LFWFs
Ambiguity

M. Diehl et al., Nucl.Phys. B596 (2001) 33-65

LFWFs formalism has the positivity property inbuilt but polynomiality is
lost by truncating both in DGLAP and ERBL sectors.
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Part 2:
The Inverse Radon Transform

N.Chouika, CM, H. Moutarde, J. Rodriguez-Quintero,
EPJC 77 (2017) no.12, 906
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Intuitive picture

H(x , ξ) =

∫
Ω

dβdαδ(x − β − αξ) [F (β, α) + ξG (β, α)]

DGLAP (red) and ERBL (green) lines
cut β = 0 outside or inside the square
Every point (β 6= 0, α) contributes
both to DGLAP and ERBL regions
For every point (β 6= 0, α) we can draw
an infinite number of DGLAP lines.

Is it possible to recover the DDs from the DGLAP region only?
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Radon Transform and GPDs

We can define a D-term such that:∫ 1

−1
dx xm (H(x , ξ)− D(x/ξ)) =

m∑
i even

(2ξ)iCm,i ,

yielding the Ludwig-Helgason consistency conditions.
From Hertle theorem (1983), we know that H − D is in the range of
the Radon transform and that:

H(x , ξ) = D(x/ξ) +

∫
Ω

dβdαδ(x − β − αξ)FD(β, α)

This allows us to identify the DD FD with the Radon transform of
H −D. This has been first noticed by O. Teryaev (PLB510 2001 125).
It should be possible to use the limited Radon inverse transform to
obtain the DD and thus the ERBL part.

NB: This is equivalent to fixing the DD to the Polyakov-Weiss scheme. The same
argument can be done in other schemes, but the D-term remains ambiguous without
additional assumptions.

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 10 / 25



Radon Transform and GPDs

We can define a D-term such that:∫ 1

−1
dx xm (H(x , ξ)− D(x/ξ)) =

m∑
i even

(2ξ)iCm,i ,

yielding the Ludwig-Helgason consistency conditions.
From Hertle theorem (1983), we know that H − D is in the range of
the Radon transform and that:

H(x , ξ) = D(x/ξ) +

∫
Ω

dβdαδ(x − β − αξ)FD(β, α)

This allows us to identify the DD FD with the Radon transform of
H −D. This has been first noticed by O. Teryaev (PLB510 2001 125).
It should be possible to use the limited Radon inverse transform to
obtain the DD and thus the ERBL part.

NB: This is equivalent to fixing the DD to the Polyakov-Weiss scheme. The same
argument can be done in other schemes, but the D-term remains ambiguous without
additional assumptions.

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 10 / 25



Uniqueness of the Extension

Since DD are compactly supported, we can use the Boman and
Todd-Quinto theorem which tells us

H(x , ξ) = 0 for (x , ξ) ∈ DGLAP⇒ FD(β, α) = 0 for all (β 6= 0, α) ∈ Ω

Boman and Todd-Quinto, Duke Math. J. 55, 943 (1987)

insuring the uniqueness of the extension up to D-term like terms.
The DGLAP region almost completely characterises the entire GPD.

New modeling strategy
Compute the DGLAP region through overlap of LFWFs
⇒ fulfilment of the positivity property
Extension to the ERBL region using the Radon inverse transform
⇒ fulfilment of the polynomiality property
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A new modelling procedure

Lightfront
Wave

Functions

GPDs in the
DGLAP region

Double
Distributions

GPDs in the
ERBL region

Overlap
of LFWFs

Inverse
Radon

Transform

Radon
Transform

Positivity
fulfilled

Polynomiality
fulfilled

Reshuffling of the series in the ERBL region
→ Polynomiality is fulfilled at every order in N.
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Part 3:
An example on the pion

N.Chouika, CM, H. Moutarde, J. Rodriguez-Quintero,
PLB 780 (2018) 287-293
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Numerical Benchmarking
Nabil Chouika Ph.D. Thesis

The inverse Radon transform is an ill-posed problem
Numerical implementation can be challenging due to noise

H(x , ξ, 0) H(x , 0.5, t)

LFWF model from N. Chouika et al., PLB 780 (2018) 287-293
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Numerical Benchmarking
Nabil Chouika Ph.D. Thesis

The inverse Radon transform is an ill-posed problem
Numerical implementation can be challenging due to noise

H(x , ξ, 0) H(x , 0.5, t)

Gaussian LFWF model (typical of AdS/QCD models)
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Part 4:
Toward a Nucleon Wave Function

CM, J. Segovia, L. Chang, C.D. Roberts,
Phys.Lett. B783 (2018) 263-267
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Dyson-Schwinger equations

Dyson-Schwinger equations (DSEs) are an infinite set of equations
relating the N-point functions among each other.
Truncating this set yields a non-perturbative approximation of QCD
Green functions.

( )−1
= ( )−1 − .

Adapted from Bashir et al.,
Commun.Theor.Phys. 58 (2012) 79-134

Non-perturbative description of
quark masses
Dynamical mass generation
(emergence)
Partonic degrees of freedom
→ effective degrees of freedom
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Bound-States and Wave function

Coupling between DSEs and bound-state equations (Bethe-Salpeter)
→ Bound state description with effective dressed quarks
Kernel truncation needs to be consistent with the underlying
symmetries of the theory
For baryons, a full relativistic 3-body equation needs to be solved
→ few people are able to solve this problem today

Alternative → dynamical diquark correlation modeling

= K
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G. Eichmann et al., Prog.Part.Nucl.Phys. 91 (2016) 1-100
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Wave Function Model

Algebraic parametrisation inspired by the results obtained from DSEs
and Faddeev equations.
It is based on Nakanishi representation, which is completely general.
This is an exploratory work: we want to know what we can or cannot
do.
We also assume the dynamical diquark correlations, both scalar and
AV, and compare in the end with Lattice QCD one.
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Nucleon Distribution Amplitude

Operator point of view for every DA (and at every twist):

〈0|εijk
(
ui
↑(z1)C/nuj

↓(z2)
)
/ndk
↑ (z3)|P, λ〉 → ϕ(x1, x2, x3),

Braun et al., Nucl.Phys. B589 (2000)

We can apply it on the wave function:
The operator then selects the relevant component of the wave
function.
Our ingredients are:

I Perturbative-like quark and diquark propagator
I Nakanishi based diquark Bethe-Salpeter-like amplitude (green disks)
I Nakanishi based quark-diquark amplitude (dark blue ellipses)
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Diquark DA

φ(x) ∝ 1− M2

K 2

ln
[
1 + K2

M2 x(1− x)
]

x(1− x)

Scalar diquark

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ΦHxL

Asymptotic

K^2 = 4M^2

K^2 = 16 M^2

Pion

0.0 0.25 0.50 0.75 1.0
0.0

0.5
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x

Φ
Π
Hx
L

Pion figure from L. Chang et al., PRL 110 (2013)

This result provides a broad and concave meson DA parametrisation
The endpoint behaviour remains linear
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Results at 2GeV
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Our Result
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Asymptotic DA

Results evolved from 0.51 to 2 GeV with both scalar and AV diquark
Nucleon DA is skewed compared to the asymptotic one
It is also broader than the asymptotic results
These properties are consequences of our quark-diquark picture
Can be extended to the radial excitations (Roper)
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Comparison with lattice

< xi >ϕ=

∫
Dx xiϕ(x1, x2, x3)

æ
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Lattice data from V.Braun et al, PRD 89 (2014)

G. Bali et al., JHEP 2016 02
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Conclusion

Cédric Mezrag (INFN) GPDs and LFWFs September 17th , 2019 23 / 25



Conclusion

GPDs Theory
We can now fulfil positivity and polynomiality a priori.
We have a systematic way to do it.

Nakanishi Parametrisation
Simple algebraic Nakanishi-like models for the pion and nucleon.
Improvement toward more realistic Nakanishi weights is on-going.
Algebraic models have their successes and their limitations.
Aim : numerical solution from Dyson-Schwinger Equations.

Phenomenology
Final goal: DVCS/TCS/DVMP cross sections.
Use PARTONS to achieve it.
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Thank you for your attention
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Back up slides
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PARTONS

http://partons.cea.fr
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Algebraic Inversion

H(x , ξ, t) = (1− x)

∫
Ω

dβdαδ(x − β − αξ)hP(β, α, t)

hP(β, α, t) =
15
2
θ(β)

[
1 +

−t
4M2

(
(1− β)2 − α2)]−3

×
[
1− 3(α2 − β2)− 2β +

−t
4M2

(
1− (α2 − β2)2 − 4β(1− β)

)]
,

From the algebraic DD we can deduce the GPD in ERBL region

H(x , ξ, 0)||x |≤ξ =
15
2

(1− x)(ξ2 − x2)

ξ3(1 + ξ)2

(
x + 2xξ + ξ2

)
,
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Numerical Basis

Use of a P1 (planar by pieces) basis
We have to trade of precision and noise:
In ill-posed inverse problem, small errors coming from our
discretisations can trigger significant increases in the numerical noise.
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