Model expression for the Potential Angular Momentum in the LC-gauge

Arturo Amor-Quiroz*
Matthias Burkardt
Cédric Lorcé

Outline

1 Introduction

- Proton Spin Crisis
- Jaffe-Manohar and Ji Decompositions
- Single Spin Asymmetries
- Lensing function and torque
[2 Model
- Scalar Diquark Model
- Potential Momentum
- Potential Angular Momentum

3 Conclusions and Outlook

Proton Spin Crisis

EMC experiment $\Rightarrow h=+1 / 2$
[J. J. Aubert et al. (EMC), Nuc. Phys. B 259, 189 (1985)]

$$
\begin{gathered}
\frac{1}{2}=\left\langle\left\langle S_{z}^{q}\right\rangle\right\rangle+\left\langle\left\langle S_{z}^{G}\right\rangle\right\rangle+\left\langle\left\langle L_{z}\right\rangle\right\rangle \\
\left\langle\left\langle S_{z}^{q}\right\rangle\right\rangle=\frac{1}{2} \int_{0}^{1} d x \Delta \Sigma(x) \\
\left\langle\left\langle S_{z}^{G}\right\rangle\right\rangle=\int_{0}^{1} d x \Delta G(x)
\end{gathered}
$$

COMPASS, HERMES $\Rightarrow \int_{0}^{1} d x \Delta \Sigma(x) \approx 0.3$
[V. Y. Alexakhin et al. (COMPASS Collaboration), Phys.Lett. B 647, 8 (2007)] [A. Airapetian et al. (HERMES Collaboration), Phys.Rev. D 75, 012007 (2007)]

PHENIX, STAR, COMPASS $\Rightarrow \int_{0.05}^{0.2} d x \Delta G(x) \approx 0.2$
[D. de Florian et al (DSSV Collaboration). Phys Rev. Lett. 113, 012001 (2014)]
[E. R. Nocera et al. (NNPDF Collaboration), Nuc. Phys. B 887, 276 (2014)]

MAIN GOAL:

To understand $\left\langle\left\langle L_{z}\right\rangle\right\rangle$ and how it can be described (decomposed).

Jaffe-Manohar and Ji Decompositions

■ The most common decompositions of angular momentum are the Jaffe-Manohar (JM) and Ji decompositions

■ Ji:

$$
\frac{1}{2} \Delta \Sigma+L_{q}+J_{g}=\frac{1}{2}
$$

■ Jaffe-Manohar:

$$
\frac{1}{2} \Delta \Sigma+\Delta G+\mathcal{L}_{q}+\mathcal{L}_{g}=\frac{1}{2}
$$

■ Differ in their definition of Orbital Angular Momentum

$$
\vec{L}_{J i} \sim \vec{r} \times i \vec{D} \quad \overrightarrow{\mathcal{L}}_{J M} \sim \vec{r} \times i \vec{\partial}
$$

■ In terms of the covariant derivative on the LC-gauge:

$$
\vec{D}_{\perp}=\vec{\partial}_{\perp}+i e \vec{A}_{\perp}
$$

[X. D. Ji, Phys. Rev. Lett. 78, 610 (1997)]
[R. L. Jaffe, A. Manohar, Nucl. Phys. B 337, 509 (1990)]

Jaffe-Manohar and Ji Decompositions

\square The potential momentum $\left(\vec{k}_{p o t}\right)$ is the difference between Ji and JM momentum:

$$
\left\langle\vec{k}_{\perp}\right\rangle_{J i}-\left\langle\vec{k}_{\perp}\right\rangle_{J M}=-e_{q}\left\langle\int d^{3} r \bar{\Psi}(\vec{r}) \gamma^{+} \vec{A}_{\perp}(\vec{r}) \Psi(\vec{r})\right\rangle
$$

■ The potential angular momentum ($L_{\text {pot }}$) is the difference between Ji and JM OAM:

$$
\langle L\rangle_{J i}-\langle\mathcal{L}\rangle_{J M}=-e_{q}\left\langle\int d^{2} r_{\perp} \bar{\Psi}(r) \gamma^{+}\left(\vec{r}_{\perp} \times \vec{A}_{\perp}(\vec{r})\right)_{z} \Psi(r)\right\rangle
$$

$■$ Explicit calculations found that the difference $\langle L\rangle_{J i}-\langle\mathcal{L}\rangle_{J M}$ vanishes at one-loop perturbation theory
■ A lattice calculation of both decompositions of quark OAM depicts a JM OAM "significantly enhanced" compared to Ji OAM.

- The scale dependence of $L_{p o t}$ was recently studied for the first time, where its magnitude seems to be suppressed by the evolution in the large energy-scale region

Single Spin Asymmetries

■ Single Spin Asymmetries (SSA) are sensitive to the orbital momentum of quarks
$■$ The Sivers SSA is interpreted as an effect of the orbital motion of (unpolarized) quarks in a transversely polarized nucleon
■ The Sivers function $f_{1 T}^{\perp}$ can be related to average transverse momentum via

$$
\left\langle k_{\perp}^{j}\right\rangle=\epsilon^{i j} S_{\perp}^{i} \int d x d^{2} k_{\perp} \frac{k_{\perp}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right)
$$

\square A nonzero Sivers asymmetry can arise as a consequence of initial/final state interactions (ISI/FSI)
$■$ In SIDIS, $f_{1 T}^{\perp}$ is associated with FSI through gluon exchange
■ The mechanism that causes transverse SSA is similar in nature to the mechanism that causes the change in the OAM of the struck quark.

Lensing function and torque

$■$ The attracting FSI bends the observed hadrons into a direction opposite of the impact position.
■ FSI are responsible for a "chromomagnetic lensing" effect on the struck quark

- It is postulated that this mechanism is responsible for the torque generated on the struck quark with respect to the spectator system
■ The possibility of factorizing $f_{1 T}^{\perp}$ into a distortion effect times a Lensing function has not been proven in a model-independent way.

[M. Burkardt, Nucl. Phys. A 735, (2004) 185.]
[Pasquini, Rodini \& Bacchetta, arXiv:1907.06960v2 (2019)]

Scalar Diquark Model

■ The proton splits into a quark and a diquark structure. While the active quark interacts with the photon, the diquark acts as the 'spectator' and vice versa.
■ Only QED is evaluated for Initial/Final State Interactions.
$■$ A simple model that provides analytic results and estimations of several observables.
■ Explicit Lorentz covariance is maintained.
$■$ We compute and compare the magnitude of the effect of ISI/FSI on the transverse momentum and OAM of the struck quark.

Potential Momentum

■ The potential momentum corresponds to the difference between Ji and JM decompositions:

$$
\left\langle k_{\perp}^{i}\right\rangle_{J i}-\left\langle k_{\perp}^{i}\right\rangle_{J M}=\frac{1}{2} e\left\langle\int d^{3} r \bar{\Psi}(r) \gamma^{+} \vec{A}^{i}(r) \Psi(r)\right\rangle
$$

■ A non-zero potential momentum requires a transversely polarized target
$■$ Can be regarded as the change in k_{\perp} experienced by the struck quark due to ISI/FSI

Potential Momentum

$$
\begin{aligned}
& \left\langle\vec{k}_{\perp}^{q}\right\rangle_{J i}=\overrightarrow{0}_{\perp} \\
& \left\langle\vec{k}_{\perp}^{q}\right\rangle_{J M}=\overrightarrow{0}_{\perp}
\end{aligned}
$$

$\left\langle\vec{k}_{\perp}^{s}\right\rangle_{J i}=\overrightarrow{0}_{\perp}$
$\left\langle\vec{k}_{\perp}^{s}\right\rangle_{J M}=\overrightarrow{0}_{\perp}$

Potential Momentum

Momentum has to be conserved!

Baron Münchhausen by Oskar Herrfurth

Potential Momentum

■ Requires at least a one-photon exchange

- Burkardt sum rule is fulfilled order by order $\sum_{a=q, s}\left\langle k_{\perp}^{a}\right\rangle=0_{\perp}$

■ The potential momentum corresponds to JM transverse momentum:

$$
\begin{aligned}
\left\langle k_{\perp}^{i}\right\rangle_{J M} & =-\frac{1}{2} e\left\langle\int d^{3} r \bar{\Psi}(r) \gamma^{+} \vec{A}_{p h y s}^{i}(r) \Psi(r)\right\rangle \\
& =\frac{1}{6}\left(\frac{g}{4 \pi \epsilon}\right)^{2} \frac{\epsilon_{T}^{i j S_{j}^{j}}}{4 \pi)^{2}}\left(3 m_{q}+M\right) \pi e_{s} e_{q}+\mathcal{O}\left(\epsilon^{-1}\right)
\end{aligned}
$$

Potential Momentum

■ Is non-zero and indirectly determines JM transverse momentum. At $\mathcal{O}\left(g^{2} e_{q} e_{s}\right)$ it is given by:

$$
\left\langle k_{\perp}^{i}\right\rangle_{J M}=\frac{1}{6}\left(\frac{g}{4 \pi \epsilon}\right)^{2} \frac{\epsilon_{T}^{i j} s_{\perp}^{j}}{(4 \pi)^{2}}\left(3 m_{q}+M\right) \pi e_{s} e_{q}+\mathcal{O}\left(\epsilon^{-1}\right)
$$

$\square\left\langle\vec{k}_{\perp}\right\rangle(x) \sim(\vec{P} \times \vec{S}) f^{\mathcal{W}}$ is naive T-odd
$\square f^{\mathcal{W}}$ has to be naive T-odd, i.e., $T: \mathcal{W} \longmapsto \mathcal{W}^{\prime}$
$\square\left\langle\bar{\Psi} \gamma^{+} \vec{D}_{\perp} \Psi\right\rangle-\left\langle\bar{\Psi} \gamma^{+} \vec{\partial}_{\perp} \Psi\right\rangle=\left\langle\bar{\Psi} \gamma^{+} i e A_{\perp} \Psi\right\rangle$
$■$ Non-vanishing k_{\perp} requires a non-vanishing Sivers function

$$
\begin{aligned}
f_{1 T}^{\perp q}\left(x, k_{\perp}^{2}\right) & =\frac{e_{s} e_{q} g^{2}}{4(2 \pi)^{4}} \frac{(1-x)\left(m_{q}+x M\right) M}{k_{\perp}^{2}\left(k_{\perp}^{2}+\tilde{m}^{2}\right)} \ln \frac{k_{\perp}^{2}+\tilde{m}^{2}}{k_{\perp}^{2}} \\
\tilde{m}^{2} & =x(1-x)\left(-M^{2}+m_{q}^{2} / x+m_{s}^{2} /(1-x)\right)
\end{aligned}
$$

Physical interpretation

■ Possible chromodynamic lensing mechanism that can provide a torque

$$
\begin{aligned}
\int d^{2} k_{\perp} \frac{k_{\perp}^{2}}{2 M^{2}} f_{1 T}^{\perp}\left(x, k_{\perp}^{2}\right) & \propto \int d^{2} b_{\perp} \mathcal{J}\left(x, b_{\perp}\right)\left(S_{T} \times \partial_{b_{\perp}}\right)_{z} \mathcal{E}^{q}\left(x, b_{\perp}^{2}\right) \\
\mathcal{J}_{S D M}^{q, i}\left(x, b_{\perp}\right) & =\frac{e_{q} e_{s}}{4 \pi} \frac{(1-x) b_{\perp}^{i}}{b_{\perp}^{2}}
\end{aligned}
$$

■ The lensing function $\mathcal{J}\left(x, b_{\perp}\right)$ accounts for the effect of ISI/FSI

- The difference between Ji and JM decompositions appears at two-loop level

■ This supports the interpretation of such a difference as originating from the torque exerted by the spectator system on the struck quark

Orbital Angular Momentum

- In the LC-gauge we can compute (Ji / JM) OAM for a longitudinally polarized target as:

$$
\left\langle L_{J i}\right\rangle=\left\langle\mathcal{L}_{J M}\right\rangle=\left\langle\int d^{2} r_{\perp} \bar{\Psi}(\vec{r}) \gamma^{+} \vec{r}_{\perp} \times i \partial_{\perp} \Psi(\vec{r})\right\rangle
$$

Potential Angular Momentum

\square A two-loop calculation of potential OAM is in progress:

$$
L_{p o t}=-e_{q}\left\langle\int d^{2} r_{\perp} \bar{\Psi}(\vec{r}) \gamma^{+}\left(\vec{r}_{\perp} \times \vec{A}_{\perp}(\vec{r})\right)_{z} \Psi(\vec{r})\right\rangle
$$

Potential Angular Momentum

■ Compute potential OAM at two-loop order for the scalar diquark sector:

■ Crosscheck for Ji Sum Rule at this order in perturbation theory

$$
J(x)=\langle\mathcal{L}\rangle_{q}(x)+\langle\mathcal{L}\rangle_{s}(x)+\frac{1}{2} g_{1}^{q}(x) \Longrightarrow J=\int d x J(x)=\frac{1}{2}
$$

Conclusions and Outlook

Conclusions:

■ The potential momentum was computed for the diquark model.
■ The difference between Ji and JM decompositions appears at two-loop level.
■ Ji and JM decompositions for OAM were obtained up to one-loop for both q and s-sectors.
$■$ Ji and JM decompositions for OAM were obtained at two-loop level for the q-sector.
$■$ We provided an estimate of $\left\langle L_{\text {pot }}^{q}\right\rangle$ within the SDM.

Outlook: $\left\langle L_{p o t}^{s}\right\rangle$ has to be evaluated!

■ Obtain analytical expressions for s-sector.
■ Crosscheck for Ji sum rule.
■ Address more complex/realistic models.

QUESTIONS?

