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• Bethe-Salpeter
bound state equation

Schrödinger equation in the momentum space:

ψ(~k) =
1

(~k2 −mE)

∫

V (~k − ~k′)ψ(~k′)
d3k′

(2π)3

E.E. Salpeter, H. Bethe, 1951

pp

p/2+k'

p/2-k'p/2-k

p/2+k

p/2-k

p/2+k

K=

Φ(k, p) =
(−g2)i2

(

(p2 + k)2 −m2 + iǫ
) (

(p2 − k)
2 −m2 + iǫ

)←
1

(~k2 −mE)

×

∫

d4k′

(2π)4
iΦ(k′, p)

[(k − k′)2 − µ2 + iǫ]
, µ = 0←

∫

V (~k − ~k′)ψ(~k′)
d3k′

(2π)3

α =
g2

16πm2
→ V (r) = −

α

r
, c = 1
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• Non-relativistic limit

Relativity exists since the speed of light c is finite

and the same in any frame.

Non-relativistic limit is c→∞.

We should restore c in the BS equation and take the limit c→∞

(analytically and/or numerically).

Restoring c:

m→ mc2, M →Mc2, α =
e2

~c
→

α

c
.

G. Wanders, Limite non-relativiste d’une équation de Bethe-Salpeter,

Helvetica Physica Acta, 1957
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• Dependence α(c)
Ground (normal) state

We repeat the calculations for a set of values of speed of light

1 ≤ c ≤ 10 and find the dependence α(c).

!" m#1, mu#0.15, B#0.1 "$
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Dependence of the coupling constant α (for the ground state) on

speed of light c. Horizontal line is the non-relativistic limit.
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• Solutions of the second type
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Dependence of the coupling constant α

(for µ = 0.15, B = 0.1) on speed of light c

For normal state: α(c→∞)→ finite (nonrelativistic) limit.
For abnormal state: α(c→∞) increases without any limit.
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• Abnormal solutions for µ = 0

In 1954, G.C. Wick and R.E. Cutkosky,

still for massless exchange µ = 0,

solved BS equation and reproduced Balmer series.

In addition, they found another series,

which is absent in the Schrödinger equation.

These new solutions, which disappear in the

non-relativistic limit, were called

"abnormal" solutions.
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• Spectrum
In general: E = Enk, n = 1, 2, 3 . . . , k = 0, 1, 2, 3, . . .

If k = 0, the normal Balmer series is reproduced
(with a relativistic correction):

En = −
α2m

4n2

(

1 +
4

π
α logα

)

However, for each given n - another (abnormal) series with
k = 1, 2, 3, . . . . For n = 1:

Ek = −m exp



−
2πk

√

α
π
− 1

4



 , k = 1, 2, 3 . . . , α >
π

4
.

This analytical formula is valid when α→ π
4
, Ek → 0.
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• Energy spectrum (still for µ = 0)
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The binding energies for normal and abnormal states.

Abnormal states are not predicted by the Schrödinger
equation, but they are predicted by the BS one!

They have purely relativistic origin.
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• Limit c→∞

Normal: B =
α2

c2
mc2

4

(

1 +
4

π

α

c
log

α

c

)

, B = |E|

⇒ solving relative to α

α(c→∞) =

√

4B

m
→ const

Abormal: B = mc2 exp



−
2πk

√

α
cπ
− 1

4





⇒ solving relative to α

α =
πc

4
+

4π3ck2

log2 B
mc2
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•What about the case µ 6= 0?

J. Carbonell, V.A. Karmanov and H. Sazdjian, LC2018:

We solved the BS equation numerically for µ 6= 0

and we found abnormal states.

They may exist in nature!

What are their properties?

Properties: the content and the EM form factors.

The content: from what are they made?

– The aim of the present talk.
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•What is content?

"Two-body" BS amplitude is not the two-body one in terms
of the Fock components!

|p〉 =

∞
∑

n≥2

∫

ψn(k1, . . . , kn, p) |n〉

|n〉 =
1

√

(n− 2)!
a†(~k1)a

†(~k2) . . . a
†(~kn−2)b

†(~k1)b
†(~k2) |0〉 , (n ≥ 2)

〈

p′|p
〉

= 1 =

∫

ψ2
2 . . .+

∫

ψ2
3 . . .+

∫

ψ2
4 . . .+ · · ·

= N2 +N3 +N4 + · · ·

a†(~ki) - the constituent particles, b†(~k1,2) - the exchanged particles.

The "content" is the values N2, N3, N4, . . .
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• Two-body LFWF ψ2 via BS amplitude

Φ(x1, x2, p) = 〈0|T (ϕ(x1)ϕ(x2)) |p〉

Explicitly covariant version of LFD:

ω·x = ω0t− ~ω·~x = 0, ω2 = 0.
Standard version: ω = (ω0, ~ω) = (ω0, ωx, ωy, ωz) =

(1, 0, 0,−1)→ ω·x = t+ z = 0

Relation between ψ2 and Φ:

ψ(~k⊥, x) =
(ω·k1)(ω·k2)

π(ω·p)

∫ +∞

−∞

Φ(k + βω, p)dβ → dk−-integration
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• Nakanishi representation

for the BS amplitude:

Φ(k, p) = −i

∫ +1

−1

g(z)dz

(m2 −M2/4− k2 − zp·k − iǫ)3

Two-body LFWF:

ψ(~k⊥, x) =
x(1− x)g(1− 2x)

(

~k2⊥ +m2 − x(1− x)M2
)2

Two-body contribution to norm:

N2 =
1

(2π)3

∫

ψ2(~k⊥, x)
d2k⊥dx

2x(1− x)

=
1

6π2

∫ 1

−1

(1− z2)g2(z)dz

[4m2 − (1− z2)M2]3
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• Form factor via BS amplitude

p -  k p' -  k

p k p'

Feynman diagram for the EM form factor.

(p+ p′)µF (Q2) = −i

∫

d4k

(2π)4
(p+ p′ − 2k)µ (m2 − k2)

×Φ

(

1

2
p− k, p

)

Φ

(

1

2
p′ − k, p′

)
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• Form factor via Nakanishi g(z)
J. Carbonell, V.A. Karmanov, M. Mangin-Brinet, Eur. Phys. J. A 39 (2009) 53.

Fif (Q
2) = −

1

32π2

∫ 1

−1
dz gi(z)

∫ 1

−1
dz′ gf (z

′)

∫ 1

0
duu2(1− u)2

fnum
f4den

,

ξ =
1

2
(1 + z)u+

1

2
(1 + z′)(1− u).

fnum = (6ξ − 5)m2 + 2M2

i ξ(1− ξ) +
1

4
Q2(1− u)u(1 + z)(1 + z′)

+ (M2

f −M2

i )(1− u)(1− ξ)(1 + z′)

fden = m2 −M2

i (1− ξ)ξ +
1

4
Q2(1− u)u(1 + z)(1 + z′)

−
1

2
(M2

f −M2

i )(1− u)(1− ξ)(1 + z′)

Mi,Mf are the initial and final masses.

Normalization of g(z): Fii(Q
2 = 0) = 1⇒ < p|p >= 1
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• Equation for g(z)

Solved numerically:

g(z) =
α

2π

∫ +1

−1

R(z, z′)

[1− η2(1− z′2)]
g(z′)dz′,

R(z, z′) =







1−z
1−z′

, if z′ < z

1+z
1+z′

, if z′ > z

η =
M

2m
, M = 2m−B, B = |E|

Solution: g(z) = gnk(z),

k = 0, 1, 2, . . . is the number of nodes of gnk(z) vs. z.
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• Symmetry of g(z)

We will concentrate on the symmetric solutions

g(−z) = g(z).

The anti-symmetric solutions g(−z) = −g(z)

do not contribute in the S-matrix

M. Ciafaloni and P. Menotti,

Phys. Rev. 140, No. 4B (1965) B929.
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• Finding g(z), B and N2

α Nnodes n/ab B N2

0.02 0 normal 0.0001 0.992

1 0 normal 0.084203 0.737

2 0 normal 0.23634 0.695

2 2 abnormal 1.2204 · 10−5 7.7 · 10−3

3 0 normal 0.43224 0.674

3 2 abnormal 2.3380 · 10−4 2.54 · 10−2

4 0 normal 0.67743 0.661

4 2 abnormal 1.21425 · 10−3 5.52 · 10−2

5 0 normal 0.99925 0.651

5 2 abnormal 3.5117 · 10−3 9.35 · 10−2

5 4 abnormal 0.2171803 · 10−4 8.55 · 10−3
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• Normal g(z), Nnodes = 0
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The function g(z), normal (ground) state, for

α = 5, B = 0.99925, Nnodes = 0.
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•Elastic (normal) EM form factor
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Elastic form factors F (Q2) for the normal (ground) state

α = 5, B = 0.99925
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• Abnormal g(z), Nnodes = 2
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The function g(z), abnormal state,

α = 5, B = 3.5117 · 10−3, Nnodes = 2.
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• Elastic (abnormal) EM form factor
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Elastic form factors F (Q2) for the abnormal state

α = 5, B = 3.5117 · 10−3.

It crosses zero at Q2 = 26.
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• Abnormal g(z), Nnodes = 4
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The function g(z), 2nd abnormal state,

α = 5, B = 2.171803 · 10−5, Nnodes = 4.
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• Elastic (abnormal) EM form factor
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Elastic form factors F (Q2) for the 2nd abnormal state

α = 5, B = 2.171803 · 10−5.

It crosses zero at Q2 = 1.1·10−4 and Q2 = 0.75·10−2
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• Transition EM form factor

normal→ 1st abnormal
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Transition form factors F (Q2) between the normal state

B = 0.99925 and the 1st abnormal one, B = 3.5117 · 10−3
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• Transition EM form factor

normal→ 2nd abnormal
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Transition form factors F (Q2) between the normal state

B = 0.99925 and the 2nd abnormal one, B = 2.171803 · 10−5
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• Transition EM form factor

1st abnormal→ 2nd abnormal
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Transition form factors F (Q2) between the 1st abnormal state

B = 3.5117 · 10−3 and the 2nd abnormal one, B = 2.171803 · 10−5
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• Conclusions

BS equation predicts the states having pure relativistic origin

(not given by the Schrödinger equation), both for massless

(Wick-Cutkosky, 1954) and massive exchanges.

Analogy: Dirac equation predicts antiparticles.

For massless exchange, the abnormal states are dominated by

the many-body sectors.

Abnormal elastic EM ff’s vs. Q2 decrease much faster than the

normal ones. The transition ff’s normal↔ abnormal are small

(∼ 10−2 − 10−3). The transition ff’s abnormal↔ abnormal are

"normal" (∼ 1).

It is interesting to analyze, from this point of view, the

properties of particles.
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Thank you!

LC2019 – p. 29/29


	ed $�ullet $ Bethe-Salpeter
	ed $�ullet $ Non-relativistic limit
	ed $�ullet $ Dependence ${�lue alpha }({ed c})$
	ed $�ullet $ Solutions of the second type
	ed $�ullet $ Abnormal solutions for $mu =0$
	ed $�ullet $ Spectrum
	ed $�ullet $ Energy spectrum (still for $mu =0$)
	ed $�ullet $ Limit $c	o infty $
	ed $�ullet $ What about the case $mu 
eq 0$?
	ed $�ullet $ What is content?
	ed $�ullet $ Two-body LFWF $psi _2$ via BS amplitude
	ed $�ullet $ Nakanishi representation
	ed $�ullet $ Form factor via BS amplitude
	ed $�ullet $ Form factor via Nakanishi $g(z)$
	ed $�ullet $ Equation for $g(z)$
	ed $�ullet $ Symmetry of $g(z)$
	ed $�ullet $ Finding $g(z)$,
$B$ and $N_2$
	ed $�ullet $ Normal {�lue $g(z),;
N_{nodes}=0$}
	ed $�ullet $Elastic (normal)
EM form factor
	ed $�ullet $ Abnormal {�lue $g(z),;
N_{nodes}=2$}
	ed $�ullet $ Elastic (abnormal)
EM form factor
	ed $�ullet $ Abnormal {�lue $g(z),;
N_{nodes}=4$}
	ed $�ullet $ Elastic (abnormal)
EM form factor
	ed $�ullet $ Transition EM form factor
	ed $�ullet $ Transition EM form factor
	ed $�ullet $ Transition EM form factor
	ed $�ullet $ Conclusions

