LC2019, Ecole Polytechnique, Paris

16 September 2019

Purely relativistic states: their content and EM form factors

V.A. Karmanov

Lebedev Physical Institute, Moscow, Russia

In collaboration with

Jaume Carbonell and Hagop Sazdjian

Institut de Physique Nucléaire, Orsay, France

• Bethe-Salpeter bound state equation

Schrödinger equation in the momentum space:

$$\psi(\vec{k}) = \frac{1}{(\vec{k}^2 - mE)} \int V(\vec{k} - \vec{k'})\psi(\vec{k'}) \frac{d^3k'}{(2\pi)^3}$$

E.E. Salpeter, H. Bethe, 1951

• Non-relativistic limit

Relativity exists since the speed of light c is finite and the same in any frame. Non-relativistic limit is $c \to \infty$.

We should restore *c* in the BS equation and take the limit $c \rightarrow \infty$ (analytically and/or numerically).

Restoring c:

$$m \to mc^2, \ M \to Mc^2, \ \alpha = \frac{e^2}{\hbar c} \to \frac{\alpha}{c}.$$

G. Wanders, *Limite non-relativiste d'une équation de Bethe-Salpeter*, Helvetica Physica Acta, 1957

• Dependence $\alpha(c)$ Ground (normal) state

We repeat the calculations for a set of values of speed of light

 $1 \le c \le 10$ and find the dependence $\alpha(c)$.

Dependence of the coupling constant α (for the ground state) on speed of light *c*. Horizontal line is the non-relativistic limit.

Solutions of the second type

For normal state: $\alpha(c \to \infty) \to \text{finite (nonrelativistic) limit.}$ For abnormal state: $\alpha(c \to \infty)$ increases without any limit.

• Abnormal solutions for $\mu = 0$

In 1954, G.C. Wick and R.E. Cutkosky, still for massless exchange $\mu = 0$, solved BS equation and reproduced Balmer series. In addition, they found another series, which is absent in the Schrödinger equation.

These new solutions, which disappear in the non-relativistic limit, were called "abnormal" solutions.

In general: $E = E_{nk}$, n = 1, 2, 3..., k = 0, 1, 2, 3, ...

If k = 0, the normal Balmer series is reproduced (with a relativistic correction):

$$E_n = -\frac{\alpha^2 m}{4n^2} \left(1 + \frac{4}{\pi} \alpha \log \alpha \right)$$

However, for each given n - another (abnormal) series with $k = 1, 2, 3, \dots$ For n = 1:

$$E_k = -m \exp\left(-\frac{2\pi k}{\sqrt{\frac{\alpha}{\pi} - \frac{1}{4}}}\right), \quad k = 1, 2, 3 \dots, \quad \alpha > \frac{\pi}{4}.$$

This *analytical* formula is valid when $\alpha \to \frac{\pi}{4}$, $E_k \to 0$.

• Energy spectrum (still for $\mu = 0$)

The binding energies for normal and abnormal states.

Abnormal states are not predicted by the Schrödinger equation, but they are predicted by the BS one! They have purely relativistic origin.

• Limit $c \to \infty$

Normal:
$$B = \frac{\alpha^2}{c^2} \frac{mc^2}{4} \left(1 + \frac{4}{\pi} \frac{\alpha}{c} \log \frac{\alpha}{c} \right), \quad B = |E|$$

 $\Rightarrow \text{ solving relative to } \alpha$
 $\alpha(c \to \infty) = \sqrt{\frac{4B}{m}} \to const$

Abormal:
$$B = mc^2 \exp\left(-\frac{2\pi k}{\sqrt{\frac{\alpha}{c\pi} - \frac{1}{4}}}\right)$$

 \Rightarrow solving relative to α

$$\alpha = \frac{\pi c}{4} + \frac{4\pi^3 ck^2}{\log^2 \frac{B}{mc^2}}$$

• What about the case $\mu \neq 0$?

J. Carbonell, V.A. Karmanov and H. Sazdjian, LC2018: We solved the BS equation numerically for $\mu \neq 0$ and we found abnormal states. They may exist in nature!

What are their properties? Properties: the content and the EM form factors. The content: from what are they made?

- The aim of the present talk.

• What is content?

"Two-body" BS amplitude is not the two-body one in terms of the Fock components!

$$|p\rangle = \sum_{n\geq 2}^{\infty} \int \psi_n(k_1, \dots, k_n, p) |n\rangle$$

$$|n\rangle = \frac{1}{\sqrt{(n-2)!}} a^{\dagger}(\vec{k}_1) a^{\dagger}(\vec{k}_2) \dots a^{\dagger}(\vec{k}_{n-2}) b^{\dagger}(\vec{k}_1) b^{\dagger}(\vec{k}_2) |0\rangle, \ (n\geq 2)$$

$$\langle p'|p\rangle = 1 = \int \psi_2^2 \dots + \int \psi_3^2 \dots + \int \psi_4^2 \dots + \dots$$

 $= N_2 + N_3 + N_4 + \cdots$

 $a^{\dagger}(\vec{k}_i)$ - the constituent particles, $b^{\dagger}(\vec{k}_{1,2})$ - the exchanged particles. The "content" is the values N_2, N_3, N_4, \ldots

Two-body LFWF ψ_2 via BS amplitude

 $\Phi(x_1, x_2, p) = \langle 0 | T(\varphi(x_1)\varphi(x_2)) | p \rangle$

Explicitly covariant version of LFD: $\omega \cdot x = \omega_0 t - \vec{\omega} \cdot \vec{x} = 0, \quad \omega^2 = 0.$ Standard version: $\omega = (\omega_0, \vec{\omega}) = (\omega_0, \omega_x, \omega_y, \omega_z) = (1, 0, 0, -1) \rightarrow \omega \cdot x = t + z = 0$

Relation between ψ_2 and Φ :

 $\psi(\vec{k}_{\perp}, x) = \frac{(\omega \cdot k_1)(\omega \cdot k_2)}{\pi(\omega \cdot p)} \int_{-\infty}^{+\infty} \Phi(k + \beta \omega, p) d\beta \rightarrow dk_{\perp} \text{-integration}$

Nakanishi representation

for the BS amplitude:

$$\Phi(k,p) = -i \int_{-1}^{+1} \frac{g(z)dz}{(m^2 - M^2/4 - k^2 - zp \cdot k - i\epsilon)^3}$$

$$\psi(\vec{k}_{\perp}, x) = \frac{x(1-x)g(1-2x)}{\left(\vec{k}_{\perp}^2 + m^2 - x(1-x)M^2\right)^2}$$

Two-body contribution to norm:

$$N_{2} = \frac{1}{(2\pi)^{3}} \int \psi^{2}(\vec{k}_{\perp}, x) \frac{d^{2}k_{\perp}dx}{2x(1-x)}$$
$$= \frac{1}{6\pi^{2}} \int_{-1}^{1} \frac{(1-z^{2})g^{2}(z)dz}{[4m^{2}-(1-z^{2})M^{2}]^{3}}$$

• Form factor via BS amplitude

Feynman diagram for the EM form factor.

$$(p+p')^{\mu}F(Q^2) = -i \int \frac{d^4k}{(2\pi)^4} (p+p'-2k)^{\mu} (m^2-k^2) \\ \times \Phi\left(\frac{1}{2}p-k,p\right) \Phi\left(\frac{1}{2}p'-k,p'\right)$$

• Form factor via Nakanishi g(z)

J. Carbonell, V.A. Karmanov, M. Mangin-Brinet, Eur. Phys. J. A 39 (2009) 53.

$$F_{if}(Q^2) = -\frac{1}{32\pi^2} \int_{-1}^{1} dz \, g_i(z) \int_{-1}^{1} dz' \, g_f(z') \int_{0}^{1} du \, u^2 (1-u)^2 \frac{f_{num}}{f_{den}^4},$$

$$\begin{split} \xi &= \frac{1}{2}(1+z)u + \frac{1}{2}(1+z')(1-u). \\ f_{num} &= (6\xi-5)m^2 + 2M_i^2\xi(1-\xi) + \frac{1}{4}Q^2(1-u)u(1+z)(1+z') \\ &+ (M_f^2 - M_i^2)(1-u)(1-\xi)(1+z') \\ f_{den} &= m^2 - M_i^2(1-\xi)\xi + \frac{1}{4}Q^2(1-u)u(1+z)(1+z') \\ &- \frac{1}{2}(M_f^2 - M_i^2)(1-u)(1-\xi)(1+z') \end{split}$$

 M_i, M_f are the initial and final masses. Normalization of g(z): $F_{ii}(Q^2 = 0) = 1 \Rightarrow \langle p | p \rangle = 1$

• Equation for g(z)

Solved numerically:

$$g(z) = \frac{\alpha}{2\pi} \int_{-1}^{+1} \frac{R(z, z')}{[1 - \eta^2 (1 - z'^2)]} g(z') dz',$$

$$R(z, z') = \begin{cases} \frac{1-z}{1-z'}, & \text{if } z' < z\\ \frac{1+z}{1+z'}, & \text{if } z' > z \end{cases}$$

$$\eta = \frac{M}{2m}, \quad M = 2m - B, \quad B = |E|$$

Solution: $g(z) = g_{nk}(z)$,

k = 0, 1, 2, ... is the number of nodes of $g_{nk}(z)$ vs. z.

• Symmetry of g(z)

We will concentrate on the symmetric solutions g(-z) = g(z).

The anti-symmetric solutions g(-z) = -g(z)do not contribute in the *S*-matrix

> *M. Ciafaloni and P. Menotti, Phys. Rev.* **140**, *No.* 4B (1965) B929.

• Finding g(z), B and N_2

lpha	N_{nodes}	n/ab	В	N_2
0.02	0	normal	0.0001	0.992
1	0	normal	0.084203	0.737
2	0	normal	0.23634	0.695
2	2	abnormal	$1.2204 \cdot 10^{-5}$	$7.7\cdot 10^{-3}$
3	0	normal	0.43224	0.674
3	2	abnormal	$2.3380 \cdot 10^{-4}$	$2.54 \cdot 10^{-2}$
4	0	normal	0.67743	0.661
4	2	abnormal	$1.21425 \cdot 10^{-3}$	$5.52\cdot 10^{-2}$
5	0	normal	0.99925	0.651
5	2	abnormal	$3.5117 \cdot 10^{-3}$	$9.35\cdot 10^{-2}$
5	4	abnormal	$0.2171803 \cdot 10^{-4}$	$8.55 \cdot 10^{-3}$

LC2019 – p. 18/29

• Normal g(z), $N_{nodes} = 0$

•Elastic (normal) EM form factor

• Abnormal g(z), $N_{nodes} = 2$

 $\alpha = 5, B = 3.5117 \cdot 10^{-3}, N_{nodes} = 2.$

Elastic (abnormal) EM form factor

 $\alpha = 5, \ B = 3.5117 \cdot 10^{-3}.$ It crosses zero at $Q^2 = 26.$ • Abnormal g(z), $N_{nodes} = 4$

Elastic (abnormal) EM form factor

Elastic form factors $F(Q^2)$ for the 2nd abnormal state

 $\alpha = 5, \ B = 2.171803 \cdot 10^{-5}.$ It crosses zero at $Q^2 = 1.1 \cdot 10^{-4}$ and $Q^2 = 0.75 \cdot 10^{-2}$

Transition EM form factor

 $normal \rightarrow 1st abnormal$

B = 0.99925 and the 1st abnormal one, $B = 3.5117 \cdot 10^{-3}$

Transition EM form factor

Transition form factors $F(Q^2)$ between the normal state B = 0.99925 and the 2nd abnormal one, $B = 2.171803 \cdot 10^{-5}$

Transition EM form factor

1st abnormal ightarrow 2nd abnormal

 $B = 3.5117 \cdot 10^{-3}$ and the 2nd abnormal one, $B = 2.171803 \cdot 10^{-5}$

• Conclusions

- BS equation predicts the states having pure relativistic origin (not given by the Schrödinger equation), both for massless (Wick-Cutkosky, 1954) and massive exchanges. Analogy: Dirac equation predicts antiparticles.
- For massless exchange, the abnormal states are dominated by the many-body sectors.
- Abnormal elastic EM ff's vs. Q² decrease much faster than the normal ones. The transition ff's normal ↔ abnormal are small (~ $10^{-2} 10^{-3}$). The transition ff's abnormal ↔ abnormal are "normal" (~ 1).
- It is interesting to analyze, from this point of view, the properties of particles.

Thank you!