LC2019, Ecole Polytechnique, Paris

16 September 2019

Purely relativistic states: their content and EM form factors

V.A. Karmanov

Lebedev Physical Institute, Moscow, Russia

In collaboration with
Jaume Carbonell and Hagop Sazdjian

Institut de Physique Nucléaire, Orsay, France

- Bethe-Salpeter bound state equation

Schrödinger equation in the momentum space:

$$
\psi(\vec{k})=\frac{1}{\left(\vec{k}^{2}-m E\right)} \int V\left(\vec{k}-\vec{k}^{\prime}\right) \psi\left(\overrightarrow{k^{\prime}}\right) \frac{d^{3} k^{\prime}}{(2 \pi)^{3}}
$$

E.E. Salpeter, H. Bethe, 1951

$$
\begin{aligned}
& \times \int \frac{d^{4} k^{\prime}}{(2 \pi)^{4}} \frac{i \Phi\left(k^{\prime}, p\right)}{\left[\left(k-k^{\prime}\right)^{2}-\mu^{2}+i \epsilon\right]}, \quad \mu=0 \leftarrow \int V\left(\vec{k}-\overrightarrow{k^{\prime}}\right) \psi\left(\overrightarrow{k^{\prime}}\right) \frac{d^{3} k^{\prime}}{(2 \pi)^{3}} \\
& \alpha=\frac{g^{2}}{16 \pi m^{2}} \rightarrow V(r)=-\frac{\alpha}{r}, \quad c=1
\end{aligned}
$$

- Non-relativistic limit

Relativity exists since the speed of light c is finite and the same in any frame.
Non-relativistic limit is $c \rightarrow \infty$.
We should restore c in the BS equation and take the limit $c \rightarrow \infty$ (analytically and/or numerically).

$$
\begin{gathered}
\text { Restoring } c: \\
m \rightarrow m c^{2}, M \rightarrow M c^{2}, \alpha=\frac{e^{2}}{\hbar c} \rightarrow \frac{\alpha}{c} .
\end{gathered}
$$

G. Wanders, Limite non-relativiste d'une équation de Bethe-Salpeter, Helvetica Physica Acta, 1957

- Dependence $\alpha(c)$ Ground (normal) state
We repeat the calculations for a set of values of speed of light
$1 \leq c \leq 10$ and find the dependence $\alpha(c)$.
(* $\mathrm{m}=1, \mathrm{mu}=0.15, \mathrm{~B}=0.1$ *)

Dependence of the coupling constant α (for the ground state) on speed of light c. Horizontal line is the non-relativistic limit.

- Solutions of the second type

Dependence of the coupling constant α (for $\mu=0.15, B=0.1$) on speed of light c

For normal state: $\alpha(c \rightarrow \infty) \rightarrow$ finite (nonrelativistic) limit. For abnormal state: $\alpha(c \rightarrow \infty)$ increases without any limit.

- Abnormal solutions for $\mu=0$

In 1954, G.C. Wick and R.E. Cutkosky, still for massless exchange $\mu=0$, solved BS equation and reproduced Balmer series.

In addition, they found another series,
which is absent in the Schrödinger equation.
These new solutions, which disappear in the non-relativistic limit, were called
"abnormal" solutions.

- Spectrum

In general: $E=E_{n k}, \quad n=1,2,3 \ldots, \quad k=0,1,2,3, \ldots$
If $k=0$, the normal Balmer series is reproduced (with a relativistic correction):

$$
E_{n}=-\frac{\alpha^{2} m}{4 n^{2}}\left(1+\frac{4}{\pi} \alpha \log \alpha\right)
$$

However, for each given n - another (abnormal) series with

$$
\begin{gathered}
k=1,2,3, \ldots \text { For } n=1: \\
E_{k}=-m \exp \left(-\frac{2 \pi k}{\sqrt{\frac{\alpha}{\pi}-\frac{1}{4}}}\right), \quad k=1,2,3 \ldots, \quad \alpha>\frac{\pi}{4} .
\end{gathered}
$$

This analytical formula is valid when $\alpha \rightarrow \frac{\pi}{4}, \quad E_{k} \rightarrow 0$.

- Energy spectrum (still for $\mu=0$)

The binding energies for normal and abnormal states.
Abnormal states are not predicted by the Schrödinger equation, but they are predicted by the BS one! They have purely relativistic origin.

- Limit $c \rightarrow \infty$

Normal: $B=\frac{\alpha^{2}}{c^{2}} \frac{m c^{2}}{4}\left(1+\frac{4}{\pi} \frac{\alpha}{c} \log \frac{\alpha}{c}\right), \quad B=|E|$
\Rightarrow solving relative to α
$\alpha(c \rightarrow \infty)=\sqrt{\frac{4 B}{m}} \rightarrow$ const

Abormal: $B=m c^{2} \exp \left(-\frac{2 \pi k}{\sqrt{\frac{\alpha}{c \pi}-\frac{1}{4}}}\right)$
\Rightarrow solving relative to α

$$
\alpha=\frac{\pi c}{4}+\frac{4 \pi^{3} c k^{2}}{\log ^{2} \frac{B}{m c^{2}}}
$$

- What about the case $\mu \neq 0$?
J. Carbonell, V.A. Karmanov and H. Sazdjian, LC2018:

We solved the BS equation numerically for $\mu \neq 0$ and we found abnormal states.

They may exist in nature!
What are their properties?
Properties: the content and the EM form factors.
The content: from what are they made?

- The aim of the present talk.

- What is content?

"Two-body" BS amplitude is not the two-body one in terms of the Fock components!

$$
|p\rangle=\sum_{n \geq 2}^{\infty} \int \psi_{n}\left(k_{1}, \ldots, k_{n}, p\right)|n\rangle
$$

$$
|n\rangle=\frac{1}{\sqrt{(n-2)!}} a^{\dagger}\left(\vec{k}_{1}\right) a^{\dagger}\left(\vec{k}_{2}\right) \ldots a^{\dagger}\left(\vec{k}_{n-2}\right) b^{\dagger}\left(\vec{k}_{1}\right) b^{\dagger}\left(\vec{k}_{2}\right)|0\rangle, \quad(n \geq 2)
$$

$\left\langle p^{\prime} \mid p\right\rangle=1=\int \psi_{2}^{2} \ldots+\int \psi_{3}^{2} \ldots+\int \psi_{4}^{2} \ldots+\cdots$

$$
=N_{2}+N_{3}+N_{4}+\cdots
$$

$a^{\dagger}\left(\vec{k}_{i}\right)$ - the constituent particles, $b^{\dagger}\left(\vec{k}_{1,2}\right)$ - the exchanged particles.
The "content" is the values $N_{2}, N_{3}, N_{4}, \ldots$

Two-body LFWF ψ_{2} via BS amplitude

$$
\Phi\left(x_{1}, x_{2}, p\right)=\langle 0| T\left(\varphi\left(x_{1}\right) \varphi\left(x_{2}\right)\right)|p\rangle
$$

Explicitly covariant version of LFD:

$$
\omega \cdot x=\omega_{0} t-\vec{\omega} \cdot \vec{x}=0, \quad \omega^{2}=0
$$

Standard version: $\quad \omega=\left(\omega_{0}, \vec{\omega}\right)=\left(\omega_{0}, \omega_{x}, \omega_{y}, \omega_{z}\right)=$

$$
(1,0,0,-1) \rightarrow \omega \cdot x=t+z=0
$$

Relation between ψ_{2} and Φ :
$\psi\left(\vec{k}_{\perp}, x\right)=\frac{\left(\omega \cdot k_{1}\right)\left(\omega \cdot k_{2}\right)}{\pi(\omega \cdot p)} \int_{-\infty}^{+\infty} \Phi(k+\beta \omega, p) d \beta \rightarrow d k_{- \text {-integration }}$

- Nakanishi representation

for the BS amplitude:

$$
\Phi(k, p)=-i \int_{-1}^{+1} \frac{g(z) d z}{\left(m^{2}-M^{2} / 4-k^{2}-z p \cdot k-i \epsilon\right)^{3}}
$$

Two-body LFWF:

$$
\psi\left(\vec{k}_{\perp}, x\right)=\frac{x(1-x) g(1-2 x)}{\left(\vec{k}_{\perp}^{2}+m^{2}-x(1-x) M^{2}\right)^{2}}
$$

Two-body contribution to norm:

$$
\begin{aligned}
N_{2} & =\frac{1}{(2 \pi)^{3}} \int \psi^{2}\left(\vec{k}_{\perp}, x\right) \frac{d^{2} k_{\perp} d x}{2 x(1-x)} \\
& =\frac{1}{6 \pi^{2}} \int_{-1}^{1} \frac{\left(1-z^{2}\right) g^{2}(z) d z}{\left[4 m^{2}-\left(1-z^{2}\right) M^{2}\right]^{3}}
\end{aligned}
$$

- Form factor via BS amplitude

Feynman diagram for the EM form factor.

$$
\begin{aligned}
\left(p+p^{\prime}\right)^{\mu} F\left(Q^{2}\right)= & -i \int \frac{d^{4} k}{(2 \pi)^{4}}\left(p+p^{\prime}-2 k\right)^{\mu}\left(m^{2}-k^{2}\right) \\
& \times \Phi\left(\frac{1}{2} p-k, p\right) \Phi\left(\frac{1}{2} p^{\prime}-k, p^{\prime}\right)
\end{aligned}
$$

- Form factor via Nakanishi $g(z)$

J. Carbonell, V.A. Karmanov, M. Mangin-Brinet, Eur. Phys. J. A 39 (2009) 53.

$$
\begin{aligned}
F_{i f}\left(Q^{2}\right)= & -\frac{1}{32 \pi^{2}} \int_{-1}^{1} d z g_{i}(z) \int_{-1}^{1} d z^{\prime} g_{f}\left(z^{\prime}\right) \int_{0}^{1} d u u^{2}(1-u)^{2} \frac{f_{n u m}}{f_{d e n}^{4}} \\
\xi & =\frac{1}{2}(1+z) u+\frac{1}{2}\left(1+z^{\prime}\right)(1-u) \\
f_{n u m} & =(6 \xi-5) m^{2}+2 M_{i}^{2} \xi(1-\xi)+\frac{1}{4} Q^{2}(1-u) u(1+z)\left(1+z^{\prime}\right) \\
& +\left(M_{f}^{2}-M_{i}^{2}\right)(1-u)(1-\xi)\left(1+z^{\prime}\right) \\
f_{\text {den }} & =m^{2}-M_{i}^{2}(1-\xi) \xi+\frac{1}{4} Q^{2}(1-u) u(1+z)\left(1+z^{\prime}\right) \\
& -\frac{1}{2}\left(M_{f}^{2}-M_{i}^{2}\right)(1-u)(1-\xi)\left(1+z^{\prime}\right)
\end{aligned}
$$

M_{i}, M_{f} are the initial and final masses.
Normalization of $g(z): F_{i i}\left(Q^{2}=0\right)=1 \Rightarrow\langle p \mid p\rangle=1$

- Equation for $g(z)$

Solved numerically:

$$
\begin{gathered}
g(z)=\frac{\alpha}{2 \pi} \int_{-1}^{+1} \frac{R\left(z, z^{\prime}\right)}{\left[1-\eta^{2}\left(1-z^{\prime 2}\right)\right]} g\left(z^{\prime}\right) d z^{\prime} \\
R\left(z, z^{\prime}\right)= \begin{cases}\frac{1-z}{1-z^{\prime}}, & \text { if } z^{\prime}<z \\
\frac{1+z}{1+z^{\prime}}, & \text { if } z^{\prime}>z\end{cases} \\
\eta=\frac{M}{2 m}, \quad M=2 m-B, \quad B=|E| \\
\text { Solution: } g(z)=g_{n k}(z)
\end{gathered}
$$

$k=0,1,2, \ldots$ is the number of nodes of $g_{n k}(z)$ vs. z.

- Symmetry of $g(z)$

We will concentrate on the symmetric solutions

$$
g(-z)=g(z) .
$$

The anti-symmetric solutions $g(-z)=-g(z)$ do not contribute in the S-matrix
M. Ciafaloni and P. Menotti,

Phys. Rev. 140, No. 4B (1965) B929.

- Finding $g(z), B$ and N_{2}

α	$N_{\text {nodes }}$	n/ab	B	N_{2}
0.02	0	normal	0.0001	0.992
1	0	normal	0.084203	0.737
2	0	normal	0.23634	0.695
2	2	abnormal	$1.2204 \cdot 10^{-5}$	$7.7 \cdot 10^{-3}$
3	0	normal	0.43224	0.674
3	2	abnormal	$2.3380 \cdot 10^{-4}$	$2.54 \cdot 10^{-2}$
4	0	normal	0.67743	0.661
4	2	abnormal	$1.21425 \cdot 10^{-3}$	$5.52 \cdot 10^{-2}$
5	0	normal	0.99925	0.651
5	2	abnormal	$3.5117 \cdot 10^{-3}$	$9.35 \cdot 10^{-2}$
5	4	abnormal	$0.2171803 \cdot 10^{-4}$	$8.55 \cdot 10^{-3}$

- Normal $g(z), N_{\text {nodes }}=0$

The function $g(z)$, normal (ground) state, for

$$
\alpha=5, B=0.99925, N_{\text {nodes }}=0 .
$$

-Elastic (normal) EM form factor

Elastic form factors $F\left(Q^{2}\right)$ for the normal (ground) state

$$
\alpha=5, B=0.99925
$$

- Abnormal $g(z), N_{\text {nodes }}=2$

The function $g(z)$, abnormal state, $\alpha=5, B=3.5117 \cdot 10^{-3}, N_{\text {nodes }}=2$.

Elastic (abnormal) EM form factor

Elastic form factors $F\left(Q^{2}\right)$ for the abnormal state

$$
\alpha=5, B=3.5117 \cdot 10^{-3}
$$

It crosses zero at $Q^{2}=26$.

- Abnormal $g(z), N_{\text {nodes }}=4$

The function $g(z)$, 2nd abnormal state, $\alpha=5, B=2.171803 \cdot 10^{-5}, N_{\text {nodes }}=4$.

Elastic (abnormal) EM form factor

Elastic form factors $F\left(Q^{2}\right)$ for the 2nd abnormal state

$$
\alpha=5, B=2.171803 \cdot 10^{-5} .
$$

It crosses zero at $Q^{2}=1.1 \cdot 10^{-4}$ and $Q^{2}=0.75 \cdot 10^{-2}$

- Transition EM form factor

normal \rightarrow 1st abnormal

Transition form factors $F\left(Q^{2}\right)$ between the normal state $B=0.99925$ and the 1 st abnormal one, $B=3.5117 \cdot 10^{-3}$

- Transition EM form factor

normal \rightarrow 2nd abnormal

Transition form factors $F\left(Q^{2}\right)$ between the normal state $B=0.99925$ and the 2nd abnormal one, $B=2.171803 \cdot 10^{-5}$

- Transition EM form factor

1st abnormal \rightarrow 2nd abnormal

Transition form factors $F\left(Q^{2}\right)$ between the 1st abnormal state $B=3.5117 \cdot 10^{-3}$ and the 2nd abnormal one, $B=2.171803 \cdot 10^{-5}$

- Conclusions

- BS equation predicts the states having pure relativistic origin (not given by the Schrödinger equation), both for massless (Wick-Cutkosky, 1954) and massive exchanges.
Analogy: Dirac equation predicts antiparticles.
- For massless exchange, the abnormal states are dominated by the many-body sectors.
- Abnormal elastic EM ff's vs. Q^{2} decrease much faster than the normal ones. The transition ff's normal \leftrightarrow abnormal are small ($\sim 10^{-2}-10^{-3}$). The transition ff's abnormal \leftrightarrow abnormal are "normal" (~ 1).
- It is interesting to analyze, from this point of view, the properties of particles.

Thank you!

