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The similarities between hadrons and atoms suggest that

atomic perturbation theory is relevant for hadrons.

Paul Hoyer LC 2019 PH 1807.05598v2 and refs. therein



The meaning of "non-perturbative” ;

Perturbative expansion diverges

Feynman diagrams lack essential features

Common view for soft QCD: Os > 1 => Use lattice QCD (or models)

Alternative possibility: Coupling freezes, H* «— urit=043  Gribov

remains perturbative o,(0)/m=0.14

April 2016
v T decays (N3LO)

a DIS jets (NLO)

o Heavy Quarkonia (NLO)

ay(Q?

o e*e jets & shapes (res. NNLO)
® ¢.w. precision fits (N3LO)

v pp—> jets (NLO)

v pp —> tt (NNLO)

Divergence of perturbative expansion o

1S due to low momentum transfers
02+

This 1s the case for classical fields in QED

0.1}

= QCD a4(M,) =0.1181 = 0.0011

and for QED bound states o(0) = 1/137

V(r) = — alr
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Principle of bound state perturbation theory

QED calculations postulate an J(0.*) (Schrédinger) wave function.

A generalization of QED bound state methods to QCD
requires a derivation of the Schrodinger eq. from Loep.

Summing ladder diagrams is not the answer: E.g., for et ¢- — et e~

() -E IEIEE

The divergence of the ladder sum gives rise to Positronium poles.

But: The free in and out states of PQED lack overlap with Positronia.

QCD: Free quark states at r = + % are incompatible with confinement.

Beware of using Feynman diagrams, based on free propagators,
for bound states! Confinement may not be recovered.
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Bound state constituents propagate in a field

For QED lamb shift, need to calculate
e~ propagator in the field of e+

In an NR approximation, this can be
described by a fixed —a/r potential.

In QCD, colored gluons interact
with relativistic quarks

% o
-

" $33

LLamb shift

Gluon and quark propagators depend
on the state 1n which they propagate.

Cannot build bound states
with constituents that have =
predetermined propagators.

T
il

Constituents propagate in
their instantaneous field,
forming eigenstates of H.




Fock state expansion for Positronium (at rest)

etem)

The le+e-) Fock state is at 9(ai2) bound by : . — e
|

the classical field of the constituents, : I :

L | : I et
which 1s not suppressed by a.
. : T o
Spin dependence arises at S(o4) from states ‘6 € 7>

with a transverse photon, le+e-y). ! i ' : €

. I T l
Ar exchange 1s suppressed by powers of a. | l et

Perturbation theory for a bound state includes E
the instantaneous field of its Fock constituents. !

This can be implemented in a Hamiltonian approach.



Canonical quantisation in tfemporal gauge: A° = O

Avoids problem due to the missing conjugate field for A9

E'=F9=_0yA" conjugateto —Ai (i=123)
E'(t,x), A (t,y)] = i0"6(x — y) (Wit @), st y)} =6apd(x—y)

H = /d‘”[%E% + 3BT + 1 FVFY + 41 (—ia'0; — ea’ A + my")y)

5S
5AY(z)

= 0, B (x) — epTy(x)

Gauss’ operator:  G(x)

G(x) generates time-independent gauge transformations, consistent with A% =0
The gauge is fixed by constraining the physical states: ~ G(z) |phys) = 0

This determines E(x) for each state, imposing Gauss’ law.

J. D. Bjorken, SLAC Summer Institute (1979)
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Schrdodinger equation for Positronium

0;E} (t, ) [phys) = ep (¢, z) |phys)
G(x) [phys) =0 =

€

EL(t, ) [phys) = —0F / dy STt ) [phys)

dr|x — y|

For the component of Positronium with
an electron at x; and a positron at x»:

e (z1)et (x2)) = a(x1)Yp(22) 0)

1 1
x — x| |x— x|

Ej e (z1)et (x2)) = —0F c (

" Arr

) [ (@e" (22))

The instantaneous Hamiltonian Hy = 1 / deE' B (x)
gives the classical potential:

HV ’6_ ($1)€+(£B2)> —

8

T ¢ )

The Schrodinger equation follows from H |eTe™) = (2m + E;) [eTe™)
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A Fock state expansion for QCD

The Fock expansion is compatible with the quark model of hadrons:

e Valence quantum numbers of mesons and baryons (lowest Fock state)
e Transverse gluon constituents contribute perturbatively, at O(o)

e The E; field i1s instantaneous even for relativistic constituents

How can color confinement arise?

Gauss’ law has no Aqcp scale
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A crucial difference between QED and QCD

Global gauge invariance allows a classical gauge field for neutral atoms,
but not a color octet gluon field for color singlet hadrons.

Positronium (QED) ® Proton (QCD) ®@®
- 1 1 ;
By () = - 0% ( - ) | Epu(x)=0

A7 '\ —x21 T — To

However:

The classical gluon field is non-vanishing
for each color component C of the state

Ej} .(z,C) #0

The blue quark feels the color field generated by the red and green quarks.

An external observer sees no field:

The gluon field generated by a color Z E”/L (x,C) =0
singlet state vanishes C |



Temporal gauge in QCD: AL =0

oS . .
Gauss’ operator Go(r) 5A0 (1) = 0;Eg (%) + gfavcApEr — QWLTCW(Q?)

generates time-independent gauge transformations, which keep Ag =0
The gauge is fully defined (in PT) by the constraint &, (x) [phys) = 0

—=  OE] () |phys) = g — farcALEL + 1T ()] [phys)
In QED one solves for E; requiring E;(x) — O for Ix| — o

In QCD, for (globally) color singlet bound states: Z Ei)a (x,C) =0
C

For each color component C there are homogeneous solutions
of Gauss’ law for E;, which do not vanish at spatial infinity.

Translation invariance requires a constant field energy density (= scale A) .

The solution is unique, up to the magnitude of the energy density (A).



Including a homogeneous solution for Ej ,

Bra(@)lphys) = <07 [ dy[wa -y + 2] .(v) Iohys)

where  E,(y) = — fupc Ay EL(y) + 1T % (y)

k # k(x,y) ensures O;E'(x) =0 (ahomogeneous solution)

The linear dependence on x makes E;, independent of x, as required by

translation invariance: .,,m.., B
The field energy density is spatially constant. “Bag model,
but no bag”
The E1 contribution to the QCD Hamiltonian is
“empty acuum QCD vacuum
HV—/dydz{y z[l Q/dIBJrg/i} +§‘ ‘ 5a(y)5a(z)

The field energy o« volume of space 1s irrelevant only if it 1s universal.
This relates the normalisation »# of all Fock components, leaving an

overall scale A as the single parameter.



Examples: Fock state potentials (I)

qq @ Hy |g(x1)q(x2)) = Vyg |g(®1)q(2))

2 Q “Cornell potential” also
Vig = A|e1 — 22| — CF - . Po™
1 — x5 for relativistic quarks
(0) A®
qgq : Vaga (@1, 24, x2) = \/77 dggq(T1, X g, T2) (universal A)
LT dusa(@r2ma) = HOV = 2@~ 0)? + N, — o - o)
I [P
1 1 1 1
(1) _ 1 [ - N( )}
VQQQ(wlawgawZ) 5 (s N Jo; — o] o, — CUg’ + Ty — $g|
. 0
When g and g coincide: Vq(;q) (1 = T, To) = A2|331 — x| = Vq(q)

(1) _ _ @)
Vi@ =g, x2) =V
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Fock state potentials (IT)

qqq -
2 1 1 1
Vagg = A2dqqq($17m27$3) 3 O‘S(\an — &9 + [z — 3 T x5 — 2131’)
1
dgqq(T1, T2, T3) = ﬁ\/(wl — )% + (X2 — x3)? + (23 — T1)?
N Q
. V. = —A2 o _ N S
g8 - 99 Cr T — x| PE——

This agrees with the qgq potential where the quarks coincide:
Vog(@, @g) = Vgg(x, x4, )

It 1s straightforward to work out the instantaneous potential for any Fock state.
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Thus: A perturbative approach to soft QCD

* The instantaneous O (o)) field binds the lowest Fock states
* The higher Fock states given by the Hamiltonian Hocp are of O (ag)

* Makes bound state calculations less of an art

For the approach to be viable the (048) dynamics must have:

Poincaré symmetry Some of these have been

Unitarity demonstrated, and the
Confinement prospects seem promising
Chiral Symmetry Breaking (CSB) (see extra slides, my home
Reasonable mass spectrum page and 1807.05598v2).
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O (o) qq bound states

The O (ozg) meson is a superposition of gg Fock states with wave function @,

’M> = Z /de‘ldiBg &ﬁ(t — O, $1)5AB(I)QB(ZU1 — Zbg)wﬁB(t — O, CBQ) ‘O>
A,B;a,3

The bound state condition H |M) = M |M) gives
o <
[z’fyofy -V + mfyo] O(x) + ¢(x) [z’fyofy -V — mfyo] = [M — V(\az\)]@(w)
wherex=xi—x;and V(lx ) =VixI=A2lx1.

In the non-relativistic limit (m > A) this reduces to the Schrédinger equation,
and we may add the instantaneous gluon exchange potential.

—> The successful quarkonium phenomenology with the Cornell potential.
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Relativistic qq bound states
AR {707, CID(w)} +m [’yo, CID(.CU)} — [M — V(a:')]CI)(a:)

Expanding the 4 x 4 wave function B | | .
in a basis of 16 Dirac structures [';(x) O(x) = Z L (x)F; (T)Y}A ()

we may use rotational, parity and charge conjugation invariance to determine
which I'/(x) may occur for a state of given jPC:

0~ trajectory [s =0, £ =j]: —np =1nc = (=1)7 v, 95, Ba-x, ya-xx L

0~ trajectory [s=1, £ =j]: np=nc=—(-1)Y YPywa -z, Vsa-xxL, a-L, y°a-L

0" trajectory [s=1,f=35+1]: np=nc=+(-1) 1, -z, Ya -z, a-zx L, Ya-zx L, Vy5a-L
0"~ trajectory [exotic] : np=-nc= (-1 4% s a-L

—> There are no solutions for quantum numbers that would be exotic
in the quark model (despite the relativistic dynamics)



Example: O trajectory wf's

b (@)= [ lia VA m®) 1 AOYA@E) o= (-ly

N

, : 2 Vv’ (7 +1
Radial equation: F|" + (; + M—V)F{ + [ (M —V)? —m? — iU+ )}Fl — 0

Local normalizability at » = 0 and at V(r) = M determines the discrete M

m=>0
Mass spectrum:
. 4 B
Llnear Regge ] o ( o [ o o o o o o
trajectories 3+ ® © e o o o o o o o
with daughters
2 - [ [ [ [ o o o [ o [

Spectrum similar to
dual models
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Sea quark contributions

Quark states in a strong field have E<O components
Bogoliubov transformation, cf. Dirac states. ,t ;

In time-ordered PT, these correspond to Z-diagrams, g
and interpreted as contributions from gg pairs.

This effect 1s manifest in the behavior lim ‘ b (w) ‘2 — const
of the wave function @ for large V = V’lxl : T — 00 N '

The asymptotically constant norm reflects, via duality,
pair production as the linear potential V(I x |) increases.

These sea quarks show up in the parton distribution measured in DIS.



Parton distributions have a sea component

20

In D=1+1 dimensions the sea component 1s prominent at low mi/e :

/ . O 1 D. D. Dietrich, PH, M. Jarvinen
mie =Y. arXiv 1212.4747
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The red curve 1s an analytic approximation, valid in the xp; — 0 limat.

Note: Enhancement at low x is due to bd (sea), not to bid" (valence) component.

To be calculated in D=3+1 (and in various frames!)

Bj



N

Decays and hadron loops

The bound state equation determines zero-width states.

There 1s an (9(1/\/]\70)
(B, ClA) =

states: string breaking 5

coupling between the A%

7N

C

3 .
L5 (P~ Py — Po) [ d1d8y e Pl 0 PaITy [508],(61)84(51 + 62)8L(50)]

vNe

When squared, this gives a 1/N¢ hadron loop unitarity correction:

7N

a a

\/

Unitarity should be satisfied at hadron level at each order of 1/Nc¢ .
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Bound states in motion

An O (o)) gg bound state with CM momentum P may be expressed as

M, P) = /da’;l dro Yt = 0,21) T @F22)/2P) (11 — 20) (¢t = 0, z5) |0)

The 1nstantaneous potential is P-independent, V(a;) — 1V’ |;B , hence the BSE:

iV - {a, CID(P)(CU)} — 1P |a, @(P)(w)] +m[y°, CID(P)(CU)] = |E - V(w)]Q)(P)(w)

The solution for ®®)(x) is not simply Lorentz contracting in x.

States with general P are needed for:

e P-dependence of angular momentum (P — < frame).
 EM form factors (gauge invariance has been verified)
e Parton distributions

* Hadron scattering
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States with M = O

For M = 0 the two points coincide. Regular, massless solutions are found.

The massless o) = /dazl dxo &(wl) O, (x1 — x2) Y(x2) |0) = 7 |0)

O++ meson “0”’

. . 1 2 Z 1 2
Form=0and V'=1: d,(x) = Ny |Jo(57 >+a'm;‘]1(1r )
Jo and J; are Bessel functions.

P"|o) =0  State has vanishing four-momentum in any frame.
It may mix with the perturbative vacuum.
This spontaneously breaks chiral invariance.
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A chiral condensate (m = 0)

Since | ¢ ) has vacuum quantum numbers and zero momentum it can mix
with the perturbative vacuum without violating Poincaré invariance

Consider: | ) = exp(&) |0) for which (x|v |x) = 4N,

An infinitesimal chiral rotation of the condensate generates a pion

Uy (8) = exp [if / dz g (@)su@)]  Uy(8) |x) = (1 —2iB 7 [x)

where 7t is the massless 0+ state with wave function $__ = V5P

This seems to provide an explicit example of chiral condensate.
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Small quark mass: m > 0

When m # 0 the massless (M, = 0) sigma 0++ state has wave function

S,(x)=fi(r)+ia-x folr)+ivy-xgs(r)

An M > 0 pion O+ state has rest frame wave function

Cr(x) = |Fi(r) +ic @ Fa(r) + 9" Fa(r)] s

!/ 2 /
FI 4 <;+ M_T>F1+ [L(M — )2 — m?|Fy =0
(X|gE (@) 7 |x) = iP* fre 7 —
1, - .MQ —iP-x
(XY (x)vs(z) T |x) = —Z%fwe =

CSB relations are satisfied for any P.
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Radial functions
are Laguerre fn’s



