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1. The Gravitational form factors

* The energy-momentum tensor (EMT) matrix elements encode

many different dynamical properties, including:
— Quantum corrections to the gravitational motion of particles
— Distribution of mass and angular momentum within hadrons

* The EMT matrix elements can be decomposed into a series of form

factors — these fully parametrise the non-perturbative information

Define on-shell states: |p, m; M> = 55\})(]3) |p, m) =27 9(]90) 5(]32 — M2)|p, m)
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“Generalised” polarisation
tensors (GPTs)
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Lorentz generator



1. The Gravitational form factors

— What are the constraints on these form factors?

* Most previous studies chose to focus on massive (canonical spin)

states with lower spin, in particular spin 0, 2 or 1

* Analyses often suffered from technical issues, such as the incorrect
treatment of non-normalisable states or boundary terms, as detailed

In: [Bakker, Leader, Trueman, hep-ph/0406139].

* A novel approach was developed in [PL, Chiu, Brodsky, 1707.06313] for the
spin-%2 case in which the EMT matrix elements were treated

rigorously, using their properties as distributions

— Established that the g—0 limit of A(q°) and G(q°) are fixed

by the Poincaré transformation properties of the states alone

Central question: What about states with arbitrary spin?




2. Constraints for massive states

* Use “distributional matching procedure” [Cotogno, Lorcé, PL, 1905.11969]:

Step 1: Construct rigorous expressions for the Lorentz charge
operators in terms of the EMT components

: 1 : . . : d P F Ve 200
Jt = 5 ik 1;11% [d’i:zc fa.r(x) [:1:3’1'{”‘ (x) — J’.Ltf‘“'?(:}'r)} ’ K'= lim /di:r far(x) [IUI 0 (x) —x"1 ”“(;rﬂ .
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Need smearing with

appropriate test functions

Step 2: Use these definitions, together with the EMT form factor
decomposition, to write the rotation and boost generator matrix

elements in terms of these form factors

(o', m's M| J|p,m; M) = —ie'*p* (2m)%6 3 (p) [O 764 (q) = & [T ()1 (D)]] 54(@)] A(q%)

+ 5 €M (B) [T (B)S™ 1 ()] 5() Ga?)

(p',m's MK [p,m; M) = i(2m) 851 (p) [5 (p0" = p'9°)8%(q) = B°0" [T ()11 (P)]| g 54(@)] A(q?)

+ 2m)*550 () [T (D) S (P)] 6%(q) G(g?)




2. Constraints for massive states

Step 3: Use the transformation properties of on-shell states under
rotations and boosts...

a)|p, k; M) me a)p, l; M),

...to write an arbitrary spin representation for the rotation and

boost matrix elements in terms of the rest frame spin  =i.,.(k) =%, (k) J 5. (k)

(p',m's M|J"|p,m; M) = (27?)4(’5(\‘f (p) {E;n (k) = S 1R pE d(; ] 6t(q)
j
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Step 4: Compare the two different representations!

— Implies the constraint  |A(¢°) §*(q) = G(¢*) 5*(q) = 6"(q)

...which is simply: A(0)=1 and G(0)=1



2. Constraints for massive states

* |dentical form factor constraints obtained from boost and rotation

generators — not generator specific!
* In fact, one can instead use the covariant operator basis
— Pauli-Lubanski W/ — implies: G(0)=1
— Covariant boost B' = %(S*P+P,S*) — implies: A(0)=1

The constraints are non-perturbative and independent of both
the spin and internal structure of the states in the matrix

elements — fixed purely from Poincaré covariance of states

Impllcatlons: Pi=3 /1 de xHE(2,0,0) = A(0) = 1,

a=gq,g"

- Spin universality of GPD sum rules: [/~ [ attituo0-co -1

> AGM B(0)=G(0)-A(0) vanishes for particles of any spin



3. Arbitrary state generalisation

Relativistic spin states are convention dependent

p,0) = U(L(p))|k,0) A(L(p))k = p

Defined by choice of Lorentz transformation and reference vector

(i) “Canonical spin state” — k=(m,0,0,0), L.(p) = pure boost

(ii) “Wick helicity state” — k=(k,0,0,K), Lu(p) = z-boost & rotation

Results derived in most of the literature, including [Cotogno, Lorcé, PL,

1905.11969], assumed massive canonical spin states

— What happens for arbitrary states?

It turns out [Lorcé, PL, 1908.02567] that one can apply an analogous

matching procedure

N-(p) = D(L(p))n. (k)

' Key: need to take derivative wrt to

momentum components of D(L(p))




3. Arbitrary state generalisation

* For the matrix element

(00" MIU(J)p, o5 M)y = (200) 650 (5) Tty (. ),

one can write this in the state-independent form:
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Lie algebra representation of D

* Similarly, the transformation properties of the states under

rotations implies the general representation:

“Wigner rotation”

T (5q) = —i€ 756,00 15%(q) + i 64(q) -
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— Comparing these expressions implies: A(0)=1 and G(0)=1




4. Summary & outlook

* By adopting a distributional approach one can prove on a

non-perturbative level that Poincaré symmetry alone is responsible
for the g—0 behaviour of A(q°) and G(q°)

=

* These constraints hold independently of the internal properties of

the states (internal structure, spin convention, mass, spin

representation)
* Constraints imply: — GPD spin sum rules are state universal
— AGM vanishes for any particle

* Results could potentially have important implications in the context
of gravitational scattering
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