Positronium on the Light-front

Xingbo Zhao \dagger, Kaiyu Fu ${ }^{\dagger}$, Hengfei Zhao \dagger
Yang Li, James P. Vary *

\dagger Institute of Modern Physics, CAS, Lanzhou, China

* Iowa State University, Ames, US

LIGHT CONE 2019, Paris, France, Sep 18, 2019

Outline

- Light-front Dynamics \& Basis Light-front Quantization
- Positronium
- Motivation
- Nonperturbative renormalization
- Numerical Results
- Heavy quarkonium
- Developments based on the positronium project
- Numerical Results
- Summary and Outlook

Why Positronium

Positronium is a test bed for

- Relativistic bound state structure beyond leading Fock-sector

$$
|\mathbf{P s}\rangle=a|e \bar{e}\rangle+b|e \bar{e} \gamma\rangle+\mathrm{c}|\gamma\rangle+\mathrm{d}|e \bar{e} e \bar{e}\rangle+\ldots
$$

- Basis Light-front Quantization on first-principle of QED, esp., nonperturbative renormalization procedure
- Connection with one-photon-exchange effective theory
[Wiecki, et al, 2015]

Li巨ht-frontouantization

[Dirac, 1949]

Equal time quantization	Light-front quantization
$t \equiv x^{0}$	$t \equiv x^{+}=x^{0}+x^{3}$
x^{1}, x^{2}, x^{3}	$x^{-}=x^{0}-x^{3}$,
P^{0}, \vec{P}	$x^{\perp}=x^{1,2}$
$i \frac{\partial}{\partial t}\|\varphi(t)\rangle=H\|\varphi(t)\rangle$	$i \frac{\partial}{\partial x^{+}}\left\|\varphi\left(x^{+}\right)\right\rangle=\frac{1}{2} P^{-}\left\|\varphi\left(x^{+}\right)\right\rangle$
$P^{0}=\sqrt{m^{2}+\vec{P}^{2}}$	$P^{-}=P^{0}-P^{3}$,

- not just a coordinate transformation.
- a new theory in a different quantization.

Why go to light front?

- Frame independent wavefunction
- Simple vacuum structure
- Boost invariant
- No square root in Hamiltonian P^{-}

Basis Light-front Quantization

- Nonperturbative eigenvalue problem

$$
P^{-}|\beta\rangle=P_{\beta}^{-}|\beta\rangle
$$

- P^{-}: light-front Hamiltonian
- $|\beta\rangle$: mass eigenstate
- P_{β}^{-}: eigenvalue for $|\beta\rangle$
- Evaluate observables for eigenstate

$$
O \equiv\langle\beta| \widehat{O}|\beta\rangle
$$

- Fock sector expansion
- Eg. $|\mathbf{P s}\rangle=a|e \bar{e}\rangle+b|e \bar{e} \gamma\rangle_{\mid}+\mathrm{c}|\gamma\rangle+\mathrm{d}|e \bar{e} e \bar{e}\rangle+\ldots$.
- Discretized basis
- Transverse: 2D harmonic oscillator basis: $\Phi_{n, m}^{b}\left(\vec{p}_{\perp}\right)$.
- Longitudinal: plane-wave basis, labeled by k.
- Basis truncation:

$$
\begin{gathered}
\sum_{i}\left(2 n_{i}+\left|m_{i}\right|+1\right) \leq N_{\max } \\
\sum_{i} k_{i}=K .
\end{gathered}
$$

$N_{\text {max }}, K$ are basis truncation parameters.
Large $N_{\max }$ and K : High UV cutoff \& low IR cutoff

Light-front QED Hamiltonian

- QED Lagrangian

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\Psi}\left(i \gamma^{\mu} D_{\mu}-m_{e}\right) \Psi
$$

- Light-front QED Hamiltonian from standard Legendre transformation

$$
\begin{aligned}
& P^{-}= \int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} \\
&=\int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} \frac{1}{2+} \bar{\Psi} \partial_{+} A_{\mu}+i \bar{\Psi} \gamma^{+} \partial_{+} \Psi-\mathcal{L}+\left(i \partial^{\perp}\right)^{2} \\
& i \partial^{+} \Psi+\frac{1}{2} A^{j}\left(i \partial^{\perp}\right)^{2} A^{j} \text { Light-cone gauge: }\left(A^{+}=0\right) \\
&+e j^{\mu} A_{\mu}+\frac{e^{2}}{2} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+} \\
& \begin{array}{c}
\text { kinetic energy terms } \\
\text { interaction } \quad \begin{array}{c}
\text { instantaneous } \\
\text { photon } \\
\text { interaction }
\end{array}
\end{array}
\end{aligned}
$$

Interaction Part Of Hamiltonian

$\mathrm{H}_{\text {int }}$	$\|e \bar{e}\rangle$	$\|e \bar{e} \gamma\rangle$
$\langle e \bar{e}\|$	$\frac{6}{8}$	
$\langle e \bar{e} \gamma\|$		0

Mass Renormalization

$$
\alpha=0.3
$$

- Mass renormalization is performed on the level single physical electron
- Mass counterterm is determined by fitting single electron mass
- Plug the physical electron and positron into the positronium.

Mass counterterm is much larger than E_{B}

Ultraviolet Cutoff for Instantaneous Photon $b_{\text {inst }}$

- Mismatch between explicit and instantaneous photon interactions:
for instantaneous photon:
$p_{\text {rel }}=p_{1}-p_{2}$ not limited

for explicit photon:
$p_{\text {rel }}=p_{1}-p_{2}$ subject to $\mathrm{N}_{\text {max }}$ truncation

- Introduce cutoff parameter $b_{\text {inst }}$ for instantaneous photon interaction:

$$
V_{\text {inst }} \equiv \int \mathrm{d}^{2} x^{\perp} \mathrm{d} x^{-} j^{+} \frac{1}{\left(i \partial^{+}\right)^{2}} j^{+} \longleftrightarrow V_{\text {inst }} \times \exp \left(-\frac{p_{\perp}^{2}}{b_{\mathrm{inst}}^{2}}\right)
$$

- $b_{\text {inst }}$ is chosen by maximizing the prob. of $\mathrm{n}=\mathrm{m}=0 \mathrm{HO}$ basis state in the ground state.

$$
\left|n_{1}=0, n_{2}=0, m_{1}=0, m_{2}=0\right\rangle
$$

Since without $b_{\text {inst }}$

Basis b

- Suitable basis scale would make results easier to converge
- Rotational symmetry as an indicator

A good choice will minimize the energy difference within the triplet $1^{3} S_{1}$

$b_{\text {inst }}$ and Basis b dependence

- For each basis truncation, we chose a suitable $b_{i n s t}$ and b
- As $N_{\text {max }}$ increases, the $b_{\text {inst }}$ seems converge with b ?
- We may only need to deal with the photon that binds fermions when suppressing the mismatch ?

Mass Renormalization

$$
\alpha=0.3
$$

- Mass renormalization is performed on the level single physical electron
- Mass counterterm is determined by fitting single electron mass
- Plug the physical electron and positron into the positronium.

Mass counterterm is much larger than E_{B}

Ground State Binding Energy

$$
E_{B}=M_{P}-2 M_{e}
$$

- E_{B} : binding energy of positronium
- M_{P} : Invariant mass of positronium
- M_{e} : Invariant mass of free electron

$$
\alpha=0.3
$$

Binding energy looks convergent. nontrivial

Energy spectrum

$$
N_{\max }=32, K=33
$$

lowest 8 states of $\mathrm{Mj}=0$: parity and charge conjugation parity agree with hydrogen atom.

$$
\alpha=0.3
$$

- The highest state in each column is a component of $2^{3} P_{2}$
- They have similar binding energy in large basis size
- Rotational symmetry is restoring

Wavefunction Projection

Wavefunction at $x=0$ x : longitudinal momentum fraction

Dominant parity: $\uparrow \downarrow-\downarrow \uparrow$

$$
\alpha=0.3
$$

- The convergence of wavefunction looks promising.

Results of different α

Binding energy

- Compare with hydrogen atom, our results are underbound
- But at small α, our results are closer to the prediction of hydrogen atom formula

Probability Of $\left|e^{+} e^{-}\right\rangle$

$$
\alpha=0.3
$$

- Interaction mediated through photon.
- Finite probability to find photon

1 - probability of $\left|e^{+} e^{-}\right\rangle$: the probability to find photon
Excited states have larger $|e \bar{e} \gamma\rangle$ component

Photon Distribution In Positronium

$$
\text { Positronium: } N_{\max }=32, K=33
$$

$$
\alpha=0.3, b=0.16
$$

$x / 2$ and $2 f(x / 2)$ for electron

electron: $N_{\max }=32, K=17$
$\alpha=0.3, b=0.16 / \sqrt{2}$
Normalization:

$$
\int_{0}^{1} f(x) d x=\text { norm } 2
$$

norm 2 is the probability of the second Fock sector
in this case,

$$
\begin{aligned}
\text { norm } 2_{P s} & =0.215 \\
\text { norm } 2_{e} & =0.21
\end{aligned}
$$

[Kaiyu Fu et al, in preparation]

- In excited states photons have larger probability at small-x region
- Photon is massless, so peak is at small-x region

Wavefunction

Nodal structure in angular direction

Heavy quarkonium

Light-front QCD Hamiltonian + effective confining potential:

$$
\mathrm{H}=P^{-}+V_{\text {conf }}
$$

$$
\begin{gathered}
m_{q}=m_{\bar{q}}=1.5 \mathrm{GeV} \\
\alpha=0.9 \\
\kappa_{T}=0.2 \\
\kappa_{L}=0.3
\end{gathered}
$$

Long-distance

$$
V_{\text {conf }}=\underbrace{\kappa_{T}^{4} x(1-x) \vec{r}_{\perp}^{2}}_{\text {LFHQCD }}-\frac{\kappa_{L}^{4}}{\underbrace{\left(m_{q}+m_{\bar{q}}\right)^{2}}_{\text {Longitudinal confinement }} \partial_{x}\left(x(1-x) \partial_{x}\right)}
$$

[Yang Li, et al, 2017]

- Color factor as the coefficient of Hamiltonian
- effective confining potential including quark mass
- New parameters are introduced like κ_{T}, κ_{L}, transverse and longitudinal confining strength

Mass spectrum

$$
N_{\max }=12, K=13 \quad \text { Preliminary }
$$

Left : a representative charmonium mass spectrum.
Right : identified particle states in $M_{J}=0$ sector compare with the OGE result and the PDG data.

Gluon Distribution In Charmonium

$$
N_{\max }=12, K=13 \quad \text { Preliminary }
$$

$$
\begin{aligned}
& \text { Normalization: } \\
& \qquad \begin{array}{c}
\int_{0}^{1} f(x) d x=\text { norm } 2 \\
\text { norm } 2_{\text {charm }}=0.753 \\
\text { norm } 2_{\mathrm{q}}=0.247 \\
\alpha=0.9
\end{array}
\end{aligned}
$$

- P-wave gluons have larger probability at small-x region
- Since gluon is massless, peak is at small-x region

Decay constants

Wave function at the origin - probe short-distance physics in LFWF representation :

Results near the PDG's data

Distribution amplitudes

DAs Control exclusive process at large momentum transfer

$$
<0\left|\bar{\psi}(z) \gamma^{+} \gamma^{5} \psi(-z)\right| P(p)>_{\mu}=\left.i p^{+} f_{p} \int_{0}^{1} d x e^{i p^{+} z^{-}-\left(x-\frac{1}{2}\right)} \phi_{P}(x ; \mu)\right|_{z^{+}, \vec{z}_{\perp}=0,}
$$

In LFWF representation:

Preliminary

$$
\frac{f_{P, V}}{2 \sqrt{2 N_{c}}} \phi_{P, V}(x ; \mu)=\frac{1}{\sqrt{x(1-x)}} \int^{\leq \mu^{2}} \frac{d^{2} k_{\perp}}{2(2 \pi)^{3}} \Psi_{\uparrow \downarrow \mp \downarrow \uparrow}^{\lambda=0}\left(x, \vec{k}_{\perp}\right)=\frac{1}{4 \pi} \Psi_{\uparrow \downarrow \mp \downarrow \uparrow}^{\lambda=0}\left(x, \vec{r}=0_{\perp}\right)
$$

DAs agree with the OGE results. Especially for low lying state, like J / ψ and η_{c}

Preliminary Wavefunction

This work

The effective one-gluon-exchange

$$
N_{\max }=8, L=8, M_{J}=0
$$

Preliminary

[Hengfei Zhao et al, in preparation]

[Yang Li, et al, 2017]

Preliminary

Conclusions

- Calculation based on first-principle (additional effective potential for quarkonium)
- Direct access to photon(gluon) content
- Rotation Symmetry is restoring as basis size increase
- Mass renormalization is performed on the level of electron
- Wave function and energy spectrum for low-lying states reasonably agree with those from the effective one-photon(gluon)-exchange approach
- The convergence of positronium results looks promising

Outlook

- Further convergence study for both systems
- More observables: PDF, GPD, TMD, GTMD,

Wigner distribution, double parton distribution function...

- Light meson systems
- Exotic hadron states

