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Why Positronium

Positronium is a test bed for

• Relativistic bound state structure beyond leading Fock-sector

• Basis Light-front Quantization on first-principle of QED, esp., 
nonperturbative renormalization procedure

• Connection with one-photon-exchange effective theory
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[Wiecki, et al, 2015]

⟩|𝐏𝐬 = 𝑎 ⟩|𝑒𝑒̅ + 𝑏 ⟩|𝑒𝑒̅𝛾 + c ⟩|𝛾 + d ⟩|𝑒𝑒̅𝑒𝑒̅ +. . . .
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Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a

t ≡ x+ = x0 + x32 HAMILTONIAN DYNAMICS 19

Figure 1: Dirac’s three forms of Hamiltonian dynamics.

The two four-volume elements are related by the Jacobian J (x̃) = ||∂x/∂x̃||, particularly
d4x = J (x̃) d4x̃. We shall keep track of the Jacobian only implicitly. The three-volume
element dω0 is treated correspondingly.

All the above considerations must be independent of this reparametrization. The
fundamental expressions like the Lagrangian can be expressed in terms of either x or x̃.
There is however one subtle point. By matter of convenience one defines the hypersphere
as that locus in four-space on which one sets the ‘initial conditions’ at the same ‘initial
time’, or on which one ‘quantizes’ the system correspondingly in a quantum theory. The
hypersphere is thus defined as that locus in four-space with the same value of the ‘time-
like’ coordinate x̃0, i.e. x̃0(x0, x) = const. Correspondingly, the remaining coordinates
are called ‘space-like’ and denoted by the spatial three-vector x̃ = (x̃1, x̃2, x̃3). Because
of the (in general) more complicated metric, cuts through the four-space characterized
by x̃0 = const are quite different from those with x̃0 = const. In generalized coordinates
the covariant and contravariant indices can have rather different interpretation, and one
must be careful with the lowering and rising of the Lorentz indices. For example, only
∂0 = ∂/∂x̃0 is a ‘time-derivative’ and only P0 a ‘Hamiltonian’, as opposed to ∂0 and P 0

which in general are completely different objects. The actual choice of x̃(x) is a matter
of preference and convenience.

2D Forms of Hamiltonian Dynamics

Obviously, one has many possibilities to parametrize space-time by introducing some
generalized coordinates x̃(x). But one should exclude all those which are accessible by a

i ∂
∂t

ϕ(t) = H ϕ(t) i ∂
∂x+

ϕ(x+ ) = 1
2
P− ϕ(x+ )

P0 = m2 +

P2 P− = m

2 + P⊥
2

P+

𝑥0, 𝑥2, 𝑥3

𝑃5, 𝑃

𝑥6 = 𝑥5 − 𝑥3,
𝑥8 = 𝑥0,2

𝑃6 = 𝑃5 − 𝑃3,
𝑃9 = 𝑃5 + 𝑃3,𝑃8 = 𝑃0,2

Why go to light front?

• Frame independent wavefunction

• Simple vacuum structure

• Boost invariant

• No square root in Hamiltonian 𝑃6

• not just a coordinate transformation.

• a new theory in a different quantization.

Light-front Quantization
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Equal time quantization Light-front quantization

[Dirac, 1949]



Basis Light-front Quantization
• Nonperturbative eigenvalue problem

𝑃6| ⟩𝛽 = 𝑃;6| ⟩𝛽
• 𝑃6: light-front Hamiltonian
• | ⟩𝛽 : mass eigenstate
• 𝑃;6: eigenvalue for | ⟩𝛽

• Evaluate observables for eigenstate
𝑂 ≡ 𝛽 >𝑂 𝛽

• Fock sector expansion
• Eg.

• Discretized basis
• Transverse: 2D harmonic oscillator basis:Φ@,A

B 𝑝⃗8 . 
• Longitudinal: plane-wave basis, labeled by 𝑘. 
• Basis truncation: 

∑G 2𝑛G + 𝑚G + 1 ≤ 𝑁ANO, 
∑G 𝑘G = 𝐾. 

𝑁ANO, 𝐾 are basis truncation parameters.

⟩|𝐏𝐬 = 𝑎 ⟩|𝑒𝑒̅ + 𝑏 ⟩|𝑒𝑒̅𝛾 + c ⟩|𝛾 + d ⟩|𝑒𝑒̅𝑒𝑒̅ +. . . .

5Large 𝑁ANO and 𝐾 : High UV cutoff & low IR cutoff

[Vary et al, 2008]

See James Vary’s talk on Thu

See Chandan Mondal’s talk on Wed



Light-front QED Hamiltonian

• QED Lagrangian

• Light-front QED Hamiltonian from standard Legendre transformation
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dition to intense laser physics, we will also apply tBLFQ
to relativistic heavy-ion physics, specifically the study of
particle production in the strong (color)-electromagnetic
fields of two colliding nuclei. Ultimately, the goal is to
use tBLFQ to address strong scattering problems with
hadrons in the initial and/or final states. As super-
computing technology continues to evolve, we envision
that tBLFQ will become a powerful tool for exploring
QCD dynamics.
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Appendix A: The light-front QED Hamiltonian

In this section we follow the derivation of the Hamil-
tonian in [18], but with an additional background field.
The Lagrangian is

L = �1

4
Fµ⌫Fµ⌫ +  ̄(i�µDµ � me) , (A1)

in which Dµ ⌘ @µ + ieCµ and Cµ = Aµ + Aµ is the sum
of the background and quantum gauge fields respectively.
Note that Fµ⌫ is calculated from Aµ alone, i.e. there is
no kinetic term for the background, which is fixed. The
equations of motion for the fields are

@µFµ⌫ = e ̄�⌫ =: ej⌫ , (A2)

which defines the current j⌫ , and
⇥
i�µDµ � me

⇤
 = 0 . (A3)

The background field appears in the equations of motion
for the fermion, but not for the gauge field. We now
analyze these equations in light-front coordinates (x± =
x0 ± x3, and x± = 2x⌥). We work in light-front gauge,
so that A+ = A+ = 0. The ⌫ = + component of (A2)
does not contain time derivatives, and can be written

1

2
A� =

@?A?

@+
� e

j+

(@+)2
. (A4)

This is a constraint equation which relates the (non-
dynamical) field A� to the transverse components A?

and the fermion current. Similarly, if we multiply (A3)
by �+ on the left, we find a constraint equation for the
fermion field. Defining first the orthogonal field compo-
nents

 � ⌘ 1
4�+�� ,  + ⌘ 1

4���+ , (A5)

the constraint equation may be written

 � =
1

2i@+

⇥
me � i�?D?

⇤
�+ + , (A6)

Hence, the field  � is non-dynamical and can be ex-
pressed in terms of the dynamical field  +. We now turn
to the construction of the Hamiltonian. The conjugate
momenta are

@L
@@+ 

= i ̄�+ ,
@L

@@+Aµ
= Fµ+ (A7)

and the Hamiltonian P� = 2P+ is then

P� =

Z
d2x?dx� Fµ+@+Aµ + i ̄�+@+ � L

=

Z
d2x?dx� Fµ+@+Aµ +

1

4
Fµ⌫Fµ⌫ + i ̄�+@+ ,

(A8)

in which the first line is the standard Legendre transfor-
mation, and in the second line we have used the equations
of motion. It is convenient to add a total derivative to
the Hamiltonian [18], the term �@µ(Fµ+A+), and again
use the equations of motion to write

P� =

Z
d2x?dx� 1

4
Fµ⌫Fµ⌫ � Fµ+Fµ+

+ i ̄�+D+ + e ̄�+A+ .
(A9)

In order to complete the transition to the Hamiltonian
picture we need to eliminate the light-front time deriva-
tives of the fields in favour of the fields themselves, and
their momenta. The gauge field terms are simplest. Let
i, j be transverse indices and define

{Ã+, Ã�, Ãj} := {0, 2
@jAj

@+
, Aj} . (A10)

The first line of (A9) then becomes

1

4
F ijFij � 1

2
F+�F+�

=
1

2
Ãj(i@?)2Ãj +

e2

2
j+ 1

(i@+)2
j+ + ej+Ã+ ,

(A11)

using the constraint (A4). The field Ãµ is that which
survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †
+D+ + , (A12)

and the spinor equations of motion (A3) then give

2iD+ + =
1

2
[me � i�?D?]�� �

=
1

2
[me � i�?D?]

��

2i@+
[me � i�?D?]�+ +

= [me � i�?D?]
1

i@+
[me + i�?D?] + .

(A13)

The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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survives the limit e ! 0, and is therefore referred to as a
‘free field’. Turning now to the spinor terms in (A9), we
have

i ̄�+D+ = 2i †
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and the spinor equations of motion (A3) then give

2iD+ + =
1
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=
1
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1

i@+
[me + i�?D?] + .
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The first line follows from �� + ⌘ 0, in the second line
we used (A6) and in the third line we commuted �� to
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the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.
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kinetic energy terms

vertex 
interaction

instantaneous 
photon 

interaction

instantaneous 
fermion 

interaction

A+ = 0( )
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Light-cone gauge:



0

Interaction Part Of Hamiltonian

Hint

me=1.0MeV

⟩|𝑒𝑒̅

⟨𝑒𝑒̅|

⟨𝑒𝑒̅𝛾|

⟩|𝑒𝑒̅𝛾

⟩|𝐏𝐬 = 𝑎 ⟩|𝑒𝑒̅ + 𝑏 ⟩|𝑒𝑒̅𝛾 + c ⟩|𝛾 + d ⟩|𝑒𝑒̅𝑒𝑒̅ +. . . .
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Mass Renormalization 
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• Mass renormalization is 
performed on the level single 
physical electron 

• Mass counterterm is 
determined by fitting single 
electron mass

• Plug the physical electron and 
positron into the positronium. 

[Kaiyu Fu et al, in preparation]

turn on mass counterterm

turn off mass counterterm
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Mass counterterm is much larger than EB

𝛼=0.3



• Mismatch between explicit and instantaneous photon interactions:

• Introduce cutoff parameter 𝑏G@ST for instantaneous photon interaction:

• 𝑏UVWX is chosen by maximizing the prob. of n=m=0 HO basis state in the ground 
state.  

9

for instantaneous photon: 
𝑝YZ[ = 𝑝0 − 𝑝2 not limited

for explicit photon:
𝑝YZ[ = 𝑝0 − 𝑝2 subject to Nmax truncation

15

the right. In analogy to Ã, we now introduce  ̃, defined
by

 ̃+ =  + ,  ̃� =
1

2i@+

⇥
me � i�?@?

⇤
�+ ̃+ . (A14)

Again, this is the field which survives the e ! 0 limit.
Our final task is to insert (A14) into (A13) and rewrite
this in terms of only the ‘tilde’ variables. First, the C-free
terms of of (A12) are:

 †
+[me�i�?@?]

1

i@+
[me+i�?@?] + =

1

2
¯̃ �+ m2

e + (i@?)2

i@+
 ̃ .

(A15)

Next, we have terms in (A12) which are linear in C.
These are

 †
+[e�?C?]

1

i@+
[me + i�?@?] +

+ †
+[me � i�?@?]

1

i@+
[�e�?C?] +

=
1

2
 ̃†

+[e�?C?]�� ̃� +
1

2
 ̃†

��+[�e�?C?] ̃+

= ej̃?C? ,
(A16)

using (A14) in the second line. Note the tilde on j in
the third line. Finally, we have the terms quadratic in C,
which are

� e2 ̃+[e�?C?]
1

i@+
[e�?C?] ̃+ . (A17)

Now, we sum (A13) (A15), (A16) and (A17) to obtain
the full Hamiltonian: we drop the ‘tilde’ on all variables
from now on, so that one must remember that

A� ⌘ 2
@?A?

@+
,  � ⌘ 1

2i@+

⇥
me � i�?@?

⇤
�+ + .

(A18)
Since we are interested in the new interactions introduced
by the background field, so we will separate these out
explicitly, expanding C ! A + A. (Recall, A has a tilde
now.) Finally, the full Hamiltonian is

P� =

Z
d2x?dx� 1

2
 ̄�+ m2

e + (i@?)2

i@+
 +

1

2
Aj(i@?)2Aj + ejµAµ +

e2

2
j+ 1

(i@+)2
j+ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ 

+ ejµAµ +
e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ +

e2

2
 ̄�µAµ

�+

i@+
�⌫A⌫ .

(A19)

The first line is the QED light-front Hamiltonian, P�
QED.

The second line contains the new terms generated by the
background field. We label the terms in P�

QED as Tf , T� ,
W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.
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W1. . . W3 respectively. Tf and T� are the kinetic energy
terms for the fermion and gauge field respectively. W1 is
called the vertex interaction, which is responsible for pho-
ton emission and electron-positron pair-production pro-
cesses. W2 is the instantaneous-photon interaction and
W3 is the instantaneous-fermion interaction. The instan-
taneous interactions are (explicitly) present exclusively in
light-front dynamics.

The additional terms introduced by the background
field, in the second line of (A19), are the three-point
background vertex interaction, the instantaneous 2-
background, 2-fermion vertex, and two, instantaneous,
1-background, 1-photon, 2-fermion vertices. For the field
(16), the Hamiltonian (A19) contains only a single term
beyond the ordinary QED Hamiltonian, this term being

j+A+ =  ̄�+ A+ = 2 †
+ +A+ =  †

+ +A� . (A20)

As the main goal in this work is to introduce the general
framework of BLFQ (rather than to present new results
through precise numerical calculations, for which see fu-
ture articles) we work for convenience with a truncated
QED Hamiltonian, dropping the instantaneous interac-
tion terms W2 and W3, proportional to e2. The remain-
ing Hamiltonian is su�cient for calculating eigenstates
and eigenvalues to first order in ↵.

1. Symmetries of P�
QED

The BLFQ basis carries three of the symmetries as
the QED light-front Hamiltonian P�

QED. These symme-

tries and their operators, which commute with P�
QED, are

listed below.

𝑉G@ST ≡ 𝑉G@ST×exp −
𝑝82

𝑏UVWX2

Ultraviolet Cutoff for Instantaneous Photon 𝑏G@ST

⟩|𝑛0 = 0, 𝑛2 = 0,𝑚0 = 0,𝑚2 = 0

Since without 𝑏UVWX
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Basis 𝑏
• Suitable basis scale would make results easier to converge

• Rotational symmetry as an indicator

Nmax=K-1
8 20

0.2 0.25 0.3 0.35 0.4 0.45

-0.0002

-0.0001

0.0000

0.0001

0.0002

0.0003

b

δE
(M
eV

)

A good choice will minimize the energy difference within the triplet 13𝑆0



b

binst

8 12 16 20 24 28 32
0

1

2

3

4

5

6

Nmax=K-1

11

𝑏G@ST and Basis 𝑏 dependence

• For each basis  truncation, we chose a suitable 𝑏G@ST and 𝑏

• As 𝑁ANO increases, the 𝑏G@ST seems converge with 𝑏

• We may only need to deal with the photon that binds fermions when suppressing the mismatch

?
?

𝛼=0.3



Mass Renormalization 

12 16 20 24 28 32

0.061
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0.064
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rm

(M
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• Mass renormalization is 
performed on the level single 
physical electron 

• Mass counterterm is 
determined by fitting single 
electron mass

• Plug the physical electron and 
positron into the positronium. 

[Kaiyu Fu et al, in preparation]

turn on mass counterterm

turn off mass counterterm

12 16 20 24 28 32
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-0.10

-0.08
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-0.04
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0.00
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E
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)

12

Mass counterterm is much larger than EB

𝛼=0.3



Ground State Binding Energy

8 12 16 20 24 28 32

-0.014

-0.012

-0.010

-0.008
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-0.004

-0.002

0.000
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E
B
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)

[Kaiyu Fu et al, in preparation]

𝐸e = 𝑀g − 2𝑀h

• 𝐸e: binding energy of positronium

• 𝑀g: Invariant mass of positronium

• 𝑀h: Invariant mass of free electron

13

Binding energy looks convergent. nontrivial

𝛼 = 0.3



[Kaiyu Fu et al, in preparation]

lowest 8 states of Mj=0 : parity and charge conjugation parity agree with hydrogen atom. 

Energy spectrum

14

𝑁ANO = 32, 𝐾 = 33
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𝛼=0.3



[Kaiyu Fu et al, in preparation] 15
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Nmax=K-1=32

• The highest state in each column is a component of 23𝑃2
• They have similar binding energy in large basis size
• Rotational symmetry is restoring
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Nmax=K-1=8

𝛼 = 0.3
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Wavefunction Projection

[Kaiyu Fu et al, in preparation]

Wavefunction at x=0
x: longitudinal momentum fraction 

16

• The convergence of wavefunction looks promising.

Dominant parity: ↑↓−↓↑

11S0
Nmax=8 Nmax=12

Nmax=16 Nmax=20

Nmax=24 Nmax=28

Nmax=32

-0.8 -0.6 -0.4 -0.2 0. 0.2 0.4 0.6 0.8
0

2

4

6

8

k⊥

Ψ

𝛼=0.3



[Kaiyu Fu et al, in preparation]

Results of different 𝛼

18

Binding energy

α=0.15

α=0.3

α=0.67

4 8 12 16 20 24

-0.020

-0.015
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-0.005

0.000

Nmax=K-1

E
B
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eV

)

−mn

o
𝑚h, 𝛼=0.3

−mn

o
𝑚h, 𝛼=0.15

• Compare with hydrogen atom, our results are underbound
• But at small 𝛼, our results are closer to the prediction of hydrogen atom formula   



Probability Of | ⟩𝑒9𝑒6

1 − probability of | ⟩𝑒9𝑒6 : the probability to find photon
Excited states have larger | ⟩𝑒𝑒̅𝛾 component

positronium
11S0 21S0

23P0 23P2

single electron
ground state
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[Kaiyu Fu et al, in preparation] 24

• Interaction mediated 
through photon.

• Finite probability to find 
photon 

𝛼=0.3



Photon Distribution In Positronium

• In excited states photons have larger probability at small-x region
• Photon is massless, so peak is at small-x region

[Kaiyu Fu et al, in preparation]

28

Positronium: 𝑁ANO = 32, 𝐾 = 33 electron: 𝑁ANO = 32, 𝐾 = 17

Normalization:

z
5

0
𝑓(𝑥)𝑑𝑥 = 𝑛𝑜𝑟𝑚2

𝑛𝑜𝑟𝑚2 is the probability of the 
second Fock sector

in this case,
𝑛𝑜𝑟𝑚2gS = 0.215
𝑛𝑜𝑟𝑚2h = 0.21

𝛼 = 0.3, 𝑏 = 0.16 𝛼 = 0.3, 𝑏 = 0.16/ 2

x/2 and 2f(x/2) for electron

positronium
11S0 23P1

23P2

electron
ground state
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Wavefunction
This work 

𝑁ANO = 20, 𝐾 = 21,𝑀� = 0
[Kaiyu Fu et al, in preparation]

[Wiecki, et al, 2015]

30

The effective one-photon-exchange
𝑁ANO = 20, 𝐾 = 19,𝑀� = 0

Nodal structure in radial direction

10𝑆5 10𝑆5

20𝑆5 20𝑆5
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[Kaiyu Fu et al, in preparation] [Wiecki, et al, 2015]

Nodal structure in angular direction

23𝑃5 23𝑃5

23𝑃2 23𝑃2



Heavy quarkonium

33

Confining potential:

H = 𝑃6 + 𝑉��@�

Longitudinal confinement

𝑉��@� = 𝜅�o𝑥 1 − 𝑥 𝑟82 −
𝜅�o

𝑚� + 𝑚��
2 𝜕O(𝑥(1 − 𝑥)𝜕O)

LFHQCD

Long-distance

Light-front QCD Hamiltonian + effective confining potential:

[Yang Li, et al, 2017]

• Color factor as the coefficient of Hamiltonian
• effective confining potential including quark mass
• New parameters are introduced like 𝜅�, 𝜅�, transverse and longitudinal confining strength

𝑚� = 𝑚�� = 1.5𝐺𝑒𝑉
𝛼 = 0.9
𝜅� = 0.2
𝜅� =0.3



BLFQ:[Hengfei Zhao et al, in preparation]

Left : a representative charmonium mass spectrum. 

Right :  identified particle states in 𝑀� = 0 sector compare with the OGE result and the PDG data.

Mass spectrum

34OGE : [Yang Li, et al, 2017]

𝑁ANO = 12, 𝐾 = 13 Preliminary



Gluon Distribution In Charmonium

• P-wave gluons have larger probability  at small-x region 
• Since gluon is massless, peak is at small-x region [Hengfei Zhao et al, in preparation]

𝑁ANO = 12, 𝐾 = 13

Normalization:

z
5

0
𝑓(𝑥)𝑑𝑥 = 𝑛𝑜𝑟𝑚2

𝑛𝑜𝑟𝑚2���Y� = 0.753
𝑛𝑜𝑟𝑚2� = 0.247

Preliminary

𝛼 = 0.9



Decay constants
Wave function at the origin ⎯ probe short-distance physics in LFWF representation : 

𝑓g,�
2 2𝑁�

𝜙g,�(𝑥; 𝜇) = lim
���→¡

𝑍2(𝜇, 𝛬¤�)z
5

0 𝑑𝑥
𝑥(1 − 𝑥)

z
���

𝑑2𝑘8
2(2𝜋)3 𝛹↑↓∓↓↑

¨©5 (𝑥, 𝑘8)

OGE : [Yang Li, et al, 2017]

Dyson-Schwinger equations : [M. Blank, et al, 2011]

Lattice : [C. McNeile et al, 2012]

Results near the PDG’s data

Preliminary
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Distribution amplitudes
DAs Control exclusive process at large momentum transfer

< 0| �𝜓(𝑧)𝛾9𝛾­𝜓(−𝑧)|𝑃(𝑝) >¯= 𝑖𝑝9𝑓± z
5

0
𝑑𝑥𝑒G±

²³´(O602)𝜙g(𝑥; 𝜇) |³²,³⃗µ©5,

In LFWF representation:
𝑓g,�

2 2𝑁�
𝜙g,�(𝑥; 𝜇) =

1
𝑥(1 − 𝑥)

z
¶¯n

𝑑2𝑘8
2(2𝜋)3 𝛹↑↓∓↓↑

¨©5 (𝑥, 𝑘8) =
1
4𝜋𝛹↑↓∓↓↑

¨©5 (𝑥, 𝑟 = 08)

OGE : [Yang Li, et al, 2017]BLFQ: [Hengfei Zhao et al, in preparation]

[e.g.  Lepage ‘80]

DAs agree with the OGE results. Especially for low lying state, like 𝐽/𝜓 and 𝜂�

Preliminary

𝛼 = 0.9





Wavefunction

[Hengfei Zhao et al, in preparation] [Yang Li, et al, 2017]

This work 
𝑁ANO = 12, 𝐾 = 13,𝑀� = 0

The effective one-gluon-exchange
𝑁ANO = 8, 𝐿 = 8,𝑀� = 0

Preliminary
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[Yang Li, et al, 2017][Hengfei Zhao et al, in preparation]

Nodal structure in angular direction

Preliminary
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[Yang Li, et al, 2017][Hengfei Zhao et al, in preparation]

Nodal structure in angular direction
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[Yang Li, et al, 2017][Hengfei Zhao et al, in preparation]

Nodal structure in radial direction

Preliminary



Conclusions

• Calculation based on first-principle (additional effective potential for quarkonium)

• Direct access to photon(gluon) content

• Rotation Symmetry is restoring as basis size increase

• Mass renormalization is performed on the level of electron

• Wave function and energy spectrum for low-lying states reasonably agree with those 

from the effective one-photon(gluon)-exchange approach

• The convergence of positronium results looks promising
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Outlook

• Further convergence study for both systems

• More observables: PDF, GPD, TMD, GTMD, 
Wigner distribution, double parton distribution function…

• Light meson systems

• Exotic hadron states

47


