Form factors and structure functions of heavy mesons and baryons

Kamil Serafin University of Warsaw

Light Cone 2019, Ecole Polytechnique, Palaiseau, France, 16th of September 2019

Renormalized Hamiltonian

$$H_s = H_{s0} + g_s H_{s1} + g_s^2 H_{s2} + \dots$$

•
$$H_{s_1}$$
, for example:
 $\int_{2}^{1} \int_{2}^{1} \int_{3}^{1} = r_{21.3} f_{21.3} \tilde{\delta}_{21.3} \bar{u}_2 \notin_1 u_3 t_{23}^1$

• Interaction form factors in vertices!

$$f_{21.3} = e^{-s^4 (\mathcal{M}_{21} - m_3^2)^2}$$

• H_{s2} ,

Heavy quarks allow for several simplifications

• We choose *s* such that

0.9 fm
$$pprox rac{1}{\Lambda_{
m QCD}} \gg s \gtrsim rac{1}{m_Q} pprox 0.05$$
 fm (bottom quark)

• For $s \ll 1/\Lambda_{\rm QCD}$ effective coupling constant is small in accordance with asymptotic freedom, while choosing $s \gtrsim 1/m_Q$ we can neglect Fock sectors with extra $Q_s \bar{Q}_s$ pairs:

$$H_{s}|\psi_{s}
angle = P^{-}|\psi_{s}
angle$$

$$|\psi_{s}\rangle = \begin{bmatrix} \cdots \\ |Q_{s}\bar{Q}_{s} \ Q_{s}\bar{Q}_{s}\rangle \\ \vdots \\ |Q_{s}\bar{Q}_{s} \ 3G_{s}\rangle \\ |Q_{s}\bar{Q}_{s} \ 2G_{s}\rangle \\ |Q_{s}\bar{Q}_{s} \ G_{s}\rangle \\ |Q_{s}\bar{Q}_{s}\rangle \end{bmatrix}$$

• Gluons, however, still pose a problem, bacause they are massless.

Gluon mass ansatz

 $\downarrow~$ integrate out perturbatively the higher sector $~\downarrow~$

$$H_{\mathrm{eff}\,s}|Q_s\bar{Q}_s\rangle \ = \ \frac{M^2+P^{\perp 2}}{P^+}|Q_s\bar{Q}_s\rangle \ ,$$

(E)

Effective interactions (mesons)

In the nonrelativistic limit we obtain potential between effective heavy quarks:

1

→

0

Effective interactions (baryons)

Three Coulomb potentials and three harmonic oscillator potentials.

In relative variables

three Coulomb potentials and two collective harmonic oscillators with frequencies ω_{12} and $\omega_{3(12)}$.

$$\begin{split} \omega_{12}^2 &= \quad \frac{1}{m_1} \frac{\alpha \lambda^3}{18\sqrt{\pi}} \left[\left(\frac{\lambda^2}{2m_1^2} \right)^{3/2} + \frac{1}{2} \left(\frac{\lambda^2}{m_1^2 + m_3^2} \right)^{3/2} \right], \quad \lambda = 1/s \\ \omega_{3(12)}^2 &= \quad \frac{2m_1 + m_3}{2m_1 m_3} \frac{\alpha \lambda^3}{18\sqrt{\pi}} \left(\frac{\lambda^2}{m_1^2 + m_3^2} \right)^{3/2}. \end{split}$$

Meson spectra used for fitting, Coulomb as a perturbation

Dotted blue: our masses (K. Serafin, M. Gómez-Rocha, J. More, S. Głazek, EPJC 78, 964). Solid black: PDG masses. Dashed green: Gómez-Rocha, Hilger, Krassnigg, PRD93 074010 (2016)

K. Serafin Form factors and structure functions of heavy mesons and baryons

э

Splittings of the second band of harmonic oscillator

- Ground states of baryons are in the ballpark of expectations except for $\Omega_{\textit{ccb}}.$
- Qualitative agreement with Lattice splittings (S. Meinel, PRD85, 114510).
- Problem with Σ term.
- Mixed-flavor systems may need explicit inclusion of two scales.

Form factors, just the very basics

$$\begin{split} & \text{Spin 0} \quad J^{\mu} = (P^{\mu} + P'^{\mu}) \ F(Q^2) \ , \\ & \text{Spin } \frac{1}{2} \quad J^{\mu}_{\sigma'\sigma} = \overline{u}_{\sigma'}(P') \left[\gamma^{\mu}F_1(Q^2) + \frac{i\sigma^{\mu\nu}q_{\nu}}{2M}F_2(Q^2) \right] u_{\sigma}(P) \ , \\ & \text{Spin 1} \quad J^{\mu}_{\sigma'\sigma} = -(P^{\mu} + P'^{\mu})(\varepsilon'^* \cdot \varepsilon)F_1(Q^2) \\ & + [\varepsilon'^{\mu*}(\varepsilon \cdot q) - \varepsilon^{\mu}(\varepsilon'^* \cdot q)] F_2(Q^2) \\ & + (P^{\mu} + P'^{\mu}) \frac{(\varepsilon \cdot q)(\varepsilon'^* \cdot q)}{2M^2} F_3(Q^2) \ , \end{split}$$

Mesons

$$\begin{split} \eta(nS): & \psi_{\sigma_1\sigma_2}(\vec{k}) &= \mathcal{N}_{PS} \ \bar{u}_1 \gamma^5 v_2 \ \psi_{nS}(\vec{k}) \\ &= \psi_{nS}(\vec{k}) \left[\frac{|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle}{\sqrt{2}} - \frac{k^1 - ik^2}{2\sqrt{2}\mu_{12}} |\uparrow\uparrow\rangle - \frac{k^1 + ik^2}{2\sqrt{2}\mu_{12}} |\downarrow\downarrow\rangle + \chi_0(1P): \quad \psi_{\sigma_1\sigma_2}^{\sigma}(\vec{k}) &= \mathcal{N}_S \bar{u}_1 v_2 \ e^{-\nu \vec{k}^2} , \\ \Upsilon(nS): \quad \psi_{\sigma_1\sigma_2}^{\sigma}(\vec{k}) &= \mathcal{N}_V \ \bar{u}_1 \gamma^\mu v_2 \varepsilon_{\sigma\mu} \ \psi_{nS}(\vec{k}) , \end{split}$$

Ground states of baryons, $\Omega_{QQQ'}(1S1S)$,

$$\psi^{\sigma}_{\sigma_{1}\sigma_{2}\sigma_{3}}(\vec{K}_{12},\vec{Q}_{3}) = \mathcal{N}\left(\bar{u}_{1}\gamma^{\mu}C\bar{u}_{2}^{T}\right) \bar{u}_{3}\gamma_{\mu}\gamma^{5}u_{M_{123}}(P,\sigma) \psi_{1515}(\vec{K}_{12},\vec{Q}_{3}) ,$$

Summary of charge radii (mesons)

cē						
	$\eta_c(1S)$	$\chi_{c0}(1P)$	$\eta_c(2S)$	J/ψ	ψ(2 <i>S</i>)	
$\sqrt{r_1^2}$ [fm]	0.249	0.322	0.381	0.257	0.385	
BLFQ, Adhikari 2018	0.207	0.265	0.386	0.212	0.387	
CI, Raya 2017	0.210			0.261		
Lattice, Dudek 2006	0.251	0.308		0.257		
DSE, Bhagwat 2006	0.219			0.228		
bb						
	$\eta_b(1S)$	$\chi_{b0}(1P)$	$\eta_b(2S)$	$\Upsilon(1S)$	Ƴ(2 <i>S</i>)	
$\sqrt{r_1^2}$ [fm]	0.1521	0.1963	0.2323	0.1535	0.2331	
BLFQ, Adhikari 2018	0.126	0.192	0.237	0.126	0.239	
CI, Raya 2017	0.110			0.195		
cb						
	$B_c(1S)$	$\chi_{bc0}(1P)$	$B_c(2S)$	$B_c^*(1S)$	$B_c^*(2S)$	
$\sqrt{r_c^2}$ [fm]	0.337	0.435	0.515	0.342	0.516	
$\sqrt{r_b^2}$ [fm]	0.105	0.136	0.160	0.106	0.161	
$\sqrt{r^2}$ [fm]	0.282	0.364	0.430	0.286	0.433	

in Form factors and structure functions of heavy mesons and baryon

=

	Ω_{ccc}	Ω_{ccb}	Ω_{bbc}	Ω_{bbb}
$\sqrt{r_c^2}$ [fm]	0.31	0.35	0.32	
$\sqrt{r_b^2}$ [fm]		0.18	0.20	0.19
$\sqrt{r^2}$ [fm]	0.31	0.39	0.20	0.19
Lattice, Can 2015, $\sqrt{\langle r_E^2 angle_c}$ [fm]	0.29			

Table: Summary of charge radii of baryons.

	μ_1	BLFQ,	CI,	Lattice,	DSE,
		Adhikari 2018	Raya 2017	Dudek 2006	Bhagwat 2006
J/ψ	2 ± 0.13	1.952(3)	2.047	2.10(3)	2.13(4)
$\psi(2S)$	2 ± 0.54	2.05(2)			
$\Upsilon(1S)$	2 ± 0.02	1.985(1)	2.012		
Ƴ(2 <i>S</i>)	2 ± 0.14	1.992(1)			

Table: Summary of magnetic dipole moments of charmonia and bottomonia and comparison with some results available in literature. My estimation of error is $\mu_1 \cdot (M - M_{12})/M_{12}$.

	μ	Lahde	Dhir	Faessler	Simonis
		2003	2013	2006	2016, 2018
$B_{c}^{+*}(1S)$	3.25 ± 0.07	2.88			2.57
$B_{c}^{+*}(2S)$	3.24 ± 0.35	2.65			
Ω_{ccb}	5.16 ± 0.46		4.49, 4.62	4.69	4.03
Ω_{bbc}	-2.77 ± 0.09		-2.45, -2.39	-2.39	-2.24

Table: Summary of magnetic dipole moments of $c\bar{b}$ particles and baryons and comparison with some results found in literature. My estimation of error is $\mu \cdot (M - M_{12})/M_{12}$ for mesons and $\mu \cdot (M - M_{123})/M_{123}$ for baryons.

Structure functions

Hadronic tensor is,

$$W^{\mu
u} = rac{1}{2s+1}\sum_{\sigma=-s}^{s}rac{1}{4\pi}\int d^{4}z e^{iqz}\langle P,\sigma|\left[\hat{J}^{\mu}(z),\hat{J}^{
u}(0)
ight]|P,\sigma
angle \;,$$

where s is the spin of the hadron.

$$W^{\mu\nu} = -\left(g^{\mu\nu} - \frac{q^{\mu}q^{\nu}}{q^2}\right)W_1 + \left(P^{\mu} - \frac{P \cdot q}{q^2}q^{\mu}\right)\left(P^{\nu} - \frac{P \cdot q}{q^2}q^{\nu}\right)\frac{W_2}{M^2}$$

In the Bjorken limit,

$$F_1(x) = \lim_{Q^2 \to \infty, \nu \to \infty} W_1 ,$$

$$F_2(x) = \lim_{Q^2 \to \infty, \nu \to \infty} \frac{\nu}{M} W_2 ,$$

where $x = Q^2/2P \cdot q$, $\nu = P \cdot q/M$.

Structure functions

Hadronic tensor rewritten:

$$\begin{split} W^{\mu\nu} &= \frac{1}{2s+1} \sum_{\sigma=-s}^{s} \frac{1}{4\pi} \\ &\times \sum_{X} (2\pi)^{4} \delta^{(4)} (P+q-P_{X}) \langle P,\sigma | \hat{J}^{\mu}(0) | X \rangle \langle X | \hat{J}^{\nu}(0) | P,\sigma \rangle \end{split}$$

Sum over hadronic final states is replaced with the sum over quark final states,

$$\sum_{X} |X\rangle\langle X| \; \delta^{(4)}(P+q-P_X) \;
ightarrow \; \int_{1'2'} b_{1'}^{\dagger} d_{2'}^{\dagger} |0\rangle\langle 0| d_{2'} b_{1'} \; \delta^{(4)}(P+q-p_{1'}-p_{2'})$$

For W^{++} , W^{+i} , W^{i+} , and W^{ij} components the desired relativistic form of W follows from the calculation with structure functions F_1 and F_2 that fulfill Callan-Gross relation.

Figure: Structure functions $F_1(x)$ and $F_2(x)$ for (a) bottomonia, (b) B_c particles, (c) charmonia. On each plot, the highest curve (blue) represents the 1*S* state, the curve with the widest top (orange) represents the 1*P* state, and the curve with steps (green) represents the 2*S* state.

Figure: Structure functions $F_1(x)$ and $F_2(x)$ for (a) *bbb*, (b) *ccc*, (c) *bbc*, and (d) *ccb* particles.

Two vastly different momentum scales – scale of binding and scale of the probing photon. Particles of different sizes in RGPEP are related through a unitary operator. So far I appoximated this operator by a unity. Extension beyond that approximation should give evolution in Q^2 .

- Fourth-order effective Hamiltonians.
 - Spin-dependents interactions.
 - Test for gluon mass ansatz.
 - Better form factors.
- Nonperturbative diagonalization of eigenproblems with gluon sectors.
- Evolution of structure functions using unitary relation between particles of different sizes.

Bibliography for charge radii and magnetic moments

K. U. Can, G. Erkol, M. Oka, and T. T. Takahashi, "Look inside charmed-strange baryons from lattice QCD," *Phys. Rev.* D92 no. 11, (2015) 114515, arXiv:1508.03048 [hep-lat].

L. Adhikari, Y. Li, M. Li, and J. P. Vary, "Form factors and generalized parton distributions of heavy quarkonia in basis light front quantization," *Phys. Rev.* C99 no. 3, (2019) 035208, arXiv:1809.06475 [hep-ph].

K. Raya, M. A. Bedolla, J. J. Cobos-Martínez, and A. Bashir, "Heavy quarkonia in a contact interaction and an algebraic model: mass spectrum, decay constants, charge radii and elastic and transition form factors," *Few Body Syst.* 59 no. 6, (2018) 133, arXiv:1711.00383 [nucl-th].

J. J. Dudek, R. G. Edwards, and D. G. Richards, "Radiative transitions in charmonium from lattice QCD," *Phys. Rev.* D73 (2006) 074507, arXiv:hep-ph/0601137 [hep-ph].

R. Dhir, C. S. Kim, and R. C. Verma, "Magnetic Moments of Bottom Baryons: Effective mass and Screened Charge," Phys. Rev. D88 (2013) 094002, arXiv:1309.4057 [hep-ph].

A. Faessler, T. Gutsche, M. A. Ivanov, J. G. Korner, V. E. Lyubovitskij, D. Nicmorus, and K. Pumsa-ard, "Magnetic moments of heavy baryons in the relativistic three-quark model," *Phys. Rev.* D73 (2006) 094013, arXiv:hep-ph/0602193 [hep-ph].

V. Simonis, "Improved predictions for magnetic moments and M1 decay widths of heavy hadrons," arXiv:1803.01809 [hep-ph].

V. Šimonis, "Magnetic properties of ground-state mesons," Eur. Phys. J. A52 no. 4, (2016) 90, arXiv:1604.05894 [hep-ph].

マロト イラト イラト