On the light-front wavefunctions and related observables of quarkonium states

Pieter Maris

Dept. of Physics and Astronomy lowa State University

Ames, IA 50011

LC2019, Sept. 2019, Palaiseau

QCD - Relativistic QFT

- Relativistic
- Nonperturbative
- Particle number not conserved
- Many-body system of fermions and bosons
- positronium, mesons: fermion and anti-fermion plus ...
- baryons: three quarks plus ...
- interaction via exchange of photons, gluons
- Confinement
- only color-singlets form asymptotic states

Light-Front Wave Functions

Light-Front Wave Function $\Psi\left(x_{i} ; p_{\perp, i}\right)$

- Solution of light-front Hamiltonian $\mathcal{M}^{2}=P^{+} P^{-}-\vec{P}_{\perp}^{2}$
- Fock space expansion
- Longitudinal momenta fraction x_{i}
- Total LF momentum $\sum_{i} x_{i}=1$
- Transverse momenta $\vec{p}_{\perp, i}$
- Transverse CoM motion $\vec{P}_{\perp}=\sum_{i} \vec{\rho}_{\perp, i}$
- Light-cone gauge

Light-Front Hamiltonian

n	Sector	1 $q \bar{q}$	$\begin{gathered} 2 \\ \mathrm{gg} \end{gathered}$	$\begin{gathered} 3 \\ q \bar{q} g \end{gathered}$	4 $q \bar{q} q \bar{q}$	$\begin{gathered} 5 \\ \mathrm{ggg} \end{gathered}$	6 qä gg	$\begin{gathered} 7 \\ q \bar{q} q \bar{q} g \end{gathered}$	$\begin{gathered} 8 \\ q \bar{q} q \bar{q} q \bar{q} \end{gathered}$	$\begin{gathered} 9 \\ g g \mathrm{gg} \end{gathered}$	$\begin{gathered} 10 \\ q \bar{q} g g \mathrm{~g} \end{gathered}$	11 $q \bar{q} q \bar{q} g g$	12 $q \bar{q} q \bar{q} q \bar{q} g$
1	$q \bar{q}$		Fm	$-K$		-	F	-	-	*	-	*	-
2	$g 9$				-			-	-		-	\bullet	-
3	$q \bar{q} g$		m						-	-	Tos	-	-
4	$q \bar{q} q \bar{q}$	$\frac{3}{3}$	-			.		$-K$		-	-		-
5	gg g	-	m		.			-	.	mer		.	-
6	$q \bar{q} g g$								-	$-$	$-K$		-
7	$q \bar{q} q \bar{q} g$	-	.		1	-				-	In	$-K$	
8	$q व \bar{q} 9 \bar{q}^{\text {q }}$	-	-	.		-	.			-	.		$-\hat{Z}$
9	gg gg	-	3	-	-		m^{-1}	.	.			-	-
10	$q \bar{q} g g \mathrm{~g}$	-	.	y^{2}	-				\cdots				-
11	$q \bar{q} q \bar{q} g g$	-	-	-		.	$\frac{5}{3}$			-			

Fock-space truncation

Quarkonium: fermion-antifermion bound states

- Dominant Fock space $|q \bar{q}\rangle$
- can obtain approximation to the mass
- electromagnetic form factors in spacelike region
however,
ambiguities due to breaking of rotational symmetry
- Use models in dominant Fock space
- extend Fock space as needed for specific observables
- Exotics require $|q \bar{q} g\rangle$ and/or $|q \bar{q} q \bar{q}\rangle$
- Strong decays of quarkonium require $|q \bar{q} q \bar{q}\rangle$
- Form factors in timelike region may require $|q \bar{q} q \bar{q}\rangle$
- Self-energies require at least one gluon $|q \bar{q} g\rangle$
- Infinite number of Fock spaces required for
- Restoration of rotational symmetry
- Dynamical chiral symmetry breaking
- Confinement

Fock-space convergence in scalar Yukawa theory

$$
\left|\chi_{\mathrm{ph}}\right\rangle=|\chi\rangle+|\chi \varphi\rangle
$$

Diagrams in the one-body sector:

Fock-space convergence in scalar Yukawa theory

$$
\left|\chi_{\mathrm{ph}}\right\rangle=|\chi\rangle+|\chi \varphi\rangle+|\chi \varphi \varphi\rangle
$$

Diagrams in the one-body sector:

Fock-space convergence in scalar Yukawa theory

$$
\left|\chi_{\mathrm{ph}}\right\rangle=|\chi\rangle+|\chi \varphi\rangle+|\chi \varphi \varphi\rangle+|\chi \varphi \varphi \varphi\rangle
$$

Diagrams in the one-body sector:

Convergence of form factor with Fock space expansion

Yang Li, Karmanov, Maris, Vary, PLB748, 278 (2015)
Obtain solutions of the charge-one sector up to four-body: $\chi+\varphi \varphi \varphi$
Study the convergence of Fock sector expansion by comparing different Fock sector truncations

Fock sector convergence of the electromagnetic form factor:

(a) one-body
(b) two-body
(c) three-body
(d) four-body

Light-Front Holography and Confinement

- Holographic variable $\vec{\zeta}_{\perp}=\sqrt{x(1-x)} \vec{r}_{\perp}$
- Effective confining interaction in transverse direction

$$
V_{\perp \text { conf }}=\kappa^{4} \zeta_{\perp}^{2}=\kappa^{4} x(1-x) r_{\perp}^{2}
$$

Brodsky, de Teramond, Dosch, Erlich, Phys. Rept. 584, 1 (2015)

- Effective longitudinal confinement

$$
V_{x \text { conf }}=-\frac{\kappa^{4}}{m_{q}+m_{\bar{q}}} \partial_{x}\left[x(1-x) \partial_{x}\right]
$$

Yang Li, Maris, Zhao, Vary, PLB758, 118 (2016)

- combines, in nonrelativistic limit, with transverse confinement into 3-D harmonic oscillator confinement
- exactly solvable
- distribution amplitudes match pQCD asymptotics

Basis Light-Front Quantization

$$
H_{\mathrm{eff}}^{0}=\frac{\vec{k}_{\perp}^{2}+m_{q}^{2}}{x}+\frac{\vec{k}_{\perp}^{2}+m_{\bar{q}}^{2}}{1-x}+\kappa^{4} \vec{\zeta}_{\perp}^{2}-\frac{\kappa^{4}}{\left(m_{q}+m_{\bar{q}}\right)^{2}} \partial_{x}\left(x(1-x) \partial_{x}\right)
$$

- Effective Hamiltonian $H_{\text {eff }}^{0}$
- LF kinetic energy
- transverse and longitudinal confinement
- Add one-gluon exchange with running coupling $V_{\text {gluon }}$

$$
V_{\text {gluon }}=-\frac{4}{3} \times \frac{4 \pi \alpha_{s}\left(Q^{2}\right)}{Q^{2}} \bar{u}_{\sigma^{\prime}} \gamma^{\mu} u_{\sigma} \bar{v}_{s} \gamma_{\mu} v_{s^{\prime}}
$$

- Basis representation use eigenfunctions of $H_{\text {eff }}^{0}$

$$
\psi\left(x, k_{\perp}\right)=\sum_{n, m, l} c_{n m / s s^{\prime}} \phi_{n m}\left(k_{\perp} / \sqrt{x(1-x)}\right) \chi_{I}(x)
$$

- transverse direction: 2-D harmonic oscillator functions
- Iongitudinal dir: Jacobi polynomials weighted by $x^{\alpha}(1-x)^{\beta}$
- Truncation on number of HO quanta, $N_{\text {max }}$, and Jacobi polynomials, $L_{\text {max }}$ (typically $N_{\text {max }}=L_{\text {max }}$)

Quarkonium Spectroscopy

Yang Li, Maris, Vary, PRD96, 016022 (2017)

	κ (GeV)	m_{q} (GeV)	fitted states	rms dev. (MeV)	$\overline{\delta_{J} M}$ (MeV)	truncation $N_{\max }$	basis dim.
$c \bar{c}$	0.966	1.603	8	31	17	32	1812
$b \bar{b}$	1.389	4.902	14	38	8	32	1812

fitted value for κ follows expected trajectory $\kappa_{h} \propto \sqrt{M_{h}}$

LF Wave Functions

available at: Yang Li (2019), Mendeley Data, v2; DOI: 10.17632/cjs4ykv8cv. 2

- Pseudoscalar mesons: two spin structures, $\psi\left(x, k_{\perp}\right)_{(\uparrow \downarrow-\downarrow \uparrow)}$ and $\psi\left(x, k_{\perp}\right)_{\downarrow \downarrow}=\psi\left(x, k_{\perp}\right)_{\uparrow \uparrow}^{*}$

- Vector mesons: 6 different Dirac structures
- Heavy quarkonia: non-relativistic configurations dominate
- Radial excitations more spread out in coordinate space

Electromagnetic and Gravitational radif

Scalar and pseudoscalar states

$$
\begin{aligned}
& \left\langle r_{\mathrm{c}}^{2}\right\rangle=\frac{3}{2}\left\langle\vec{b}_{\perp}^{2}\right\rangle \equiv \frac{3}{2} \sum_{s, \bar{s}} \int_{0}^{1} \frac{d x}{4 \pi} \int d^{2} r_{\perp}(1-x)^{2} \widetilde{r}_{\perp}^{2} \widetilde{\psi}_{s \bar{s}}^{*}\left(\vec{r}_{\perp}, x\right) \widetilde{\psi}_{s \bar{s}}\left(\vec{r}_{\perp}, x\right) \\
& \left\langle r_{\mathrm{m}}^{2}\right\rangle=\frac{3}{2}\left\langle\vec{\zeta}_{\perp}^{2}\right\rangle \equiv \frac{3}{2} \sum_{s, \bar{s}} \int_{0}^{1} \frac{d x}{4 \pi} \int d^{2} r_{\perp} x(1-x) \tilde{r}_{\perp}^{2} \widetilde{\psi}_{s \bar{s}}^{*}\left(\vec{r}_{\perp}, x\right) \widetilde{\psi}_{s \bar{s}}\left(\vec{r}_{\perp}, x\right)
\end{aligned}
$$

> Yang Li, Maris, Vary, PRD96, 016022 (2017)

- 'Charge' radii slightly larger than mass radii for charmonia, but nearly equal for bottomonia
- splitting is relativistic effect

Electromagnetic form factors

Adhikari, Yang Li, Meijian Li, Vary, PRC99, 035208 (2019)

- Reasonably well converged with basis expansion
- \uparrow form factor is larger than that of J / ψ in spacelike region, and correspondingly smaller radius, as expected

Magnetic and Quadrupole form factors

Adhikari, Yang Li, Meijian Li, Vary, PRC99, 035208 (2019)

μ	this work	lat	DSE
J / ψ	$1.952(3)$	$2.10(3)$	$2.13(4)$
ψ	$2.05(2)$		
Υ	$1.985(1)$		
γ^{\prime}	$1.992(1)$		
Q	this work	lat	DSE
J / ψ	$-0.78(2)$	$-0.23(2)$	$-0.28(1)$
ψ	$0.2(2)$		
Υ	$-0.73(1)$		
γ^{\prime}	$0.1(1)$		

lat: Dudek, Edwards, Richards, PRD73,074507 (2006)
DSE: Bhagwat and Maris, PRC77, 025203 (2008)

Covariant Bethe-Salpeter Equation

Bound state momentum P, and relative momenta p, k

$$
\Gamma_{\mathrm{BS}}(p, P)=i \int \frac{\mathrm{~d}^{4} k}{(2 \pi)^{4}} K(p, k ; P) S\left(k_{1}\right) \Gamma_{\mathrm{BS}}(k, P) S\left(k_{2}\right)
$$

normalized by canonical normalization condition

- Conventionally
- Wick rotate from Minkowski metric to Euclidean metric
- Solve for Euclidean (spacelike) variable p_{E}^{2} and angle α between p_{E} and P_{E} at bound state pole $P_{E}^{2}=-M^{2}$
- Can be done with bare constituents and with nonperturbatively dressed propagators
- Straightforward to obtain e.g. form factors over a limited spacelike and timelike region
- Question: Extract Light-Front Wave Function from 「?
- Solve in Minkowski metric for spacelike and timelike p^{2} ?
- Covariant Spectator Theory
- Nakanishi representation
- Un-Wick rotate p_{0} from Euclidean to Minkowski metric

Covariant Spectator Theory

- Keep only the contribution from the positive-energy pole of one quark in the k_{0} contour integration

Gross, PR186, 1448 (1969)

- Can be extended to confined constituents
- Has correct one-body and nonrelativistic limits
- Use linear confining potential plus one-gluon exchange kernel
- Use Pauli-Villars regularization
- Solve numerically in Minkowski space rest-frame

Leitão et al, EPJ C77:696 (2017)

Light-Front Wave Functions from CST

CST amplitudes with helicity $\rho= \pm 1$

$$
\begin{aligned}
\Psi_{\lambda_{1} \lambda_{2}}^{+\rho}(\vec{k}) \equiv & \frac{m}{E_{k}} \frac{\rho}{(1-\rho) E_{k}+\rho M} \\
& \bar{u}_{1}^{+}\left(\vec{k}, \lambda_{1}\right) \Gamma(k) u_{2}^{\rho}\left(\vec{k}, \lambda_{2}\right)
\end{aligned}
$$

can be interpreted as LFWF
with suitable definition of $x=\frac{k_{1}^{+}}{P^{+}}$

- in principle:
$P^{+}=M$ and $k_{1}^{+}=E_{k}+k_{3}$, so $x=\left(E_{k}+k_{3}\right) / M$, but it is not guaranteed that $0<x<1$
- use Brodsky-Huang-Lepage prescription $x=\left(E_{k}+k_{3}\right) /\left(2 E_{k}\right)$, which satisfies $0<x<1$

Comparison of Distribution Amplitudes

Leitão, Yang Li, Maris, Peña, Stadler, Vary, Biernat, EPJ C77:696 (2017)

- Different models give very similar distribution amplitudes
- Radial excitations show characteristic 'double hump'
- Bottomonium DA narrower than charmonium

Nakanishi integral representation

Nakanishi, Phys.Rev. 130, 1230 (1963); Prog.Theor.Phys.Suppl. 43, 1 (1969)

- For propagators (2-point functions) of asymptotic states

$$
S(p)=-i \int_{0}^{\infty} d \gamma \frac{\rho(\gamma)}{\left(\gamma+m^{2}-p^{2}-i \epsilon\right)^{n}}
$$

$n=1$ gives usual Källen-Lehmann representation

- Applicability to confined states unclear
- For two-body BSA for bound state with mass $M^{2}=P^{2}$

$$
\Gamma(p ; P)=-i \int_{-1}^{1} d z \int_{0}^{\infty} d \gamma \frac{g(\gamma, z)}{\left(\gamma+m^{2}-M^{2} / 4-p^{2}-p \cdot P z-i \epsilon\right)^{n}}
$$

- Used for
- 2-body scalar BSE Kusaka et al, PRD56, 5071 (1997)
- fermion DSE and BSE

Sauli, JHEP 0303, 1 (2003)

- recent work: Carbonell, Karmanov, Frederico, Salmè, ...

Un-Wick rotating from Euclidean to Minkowski metric

$$
\Gamma(p ; P)=g^{2} \int_{-\infty}^{\infty} d k_{0} \int \frac{d^{3} \vec{k}}{(2 \pi)^{4}} K(p, k ; P) S(k+p / 2) \Gamma(k ; P) S(k-p / 2)
$$

- Un-Wick rotate p_{0} and k_{0} from Euclidean metric in decrements θ starting from $\theta=\pi / 2$

$$
\begin{aligned}
& p_{4} \rightarrow \exp (-i(\pi / 2-\theta)) p_{4}=\exp (i \theta) p_{0} \\
& k_{4} \rightarrow \exp (-i(\pi / 2-\theta)) k_{4}=\exp (i \theta) k_{0}
\end{aligned}
$$

- Solve BSE iteratively as function of p_{0} and \vec{p}^{2} along rotated p_{0} axis, starting with solution at previous value of θ, to obtain Green's functions as function of $p_{0} \mathrm{e}^{i \theta}$ and \vec{p}^{2}, instead of as function of Lorentz scalar p^{2}
- Use Pauli-Villars regulator to remove UV divergences
- Approach Minkowski space for $\theta \rightarrow 0$
- space-like region $p_{0}^{2}=0$ with $\vec{p}^{2}>0$
- time-like region $p_{0}^{2}>0$ with $\vec{p}^{2}=0$
- Manifestly covariant BSA for space- and time-like momenta

Example: scalar model in ladder truncation

Castro et al, JPCS 1291, 012006 (2019) Use Nakanishi representation for $\chi(k ; P)$ at $P^{2}=M^{2}$

$$
\begin{aligned}
\chi(k ; P) & \equiv \Delta(k+P / 2) \Gamma(k ; P) \Delta(k-P / 2) \\
& =-i \int_{-1}^{1} d z \int_{0}^{\infty} d \gamma \frac{g(\gamma, z)}{\left(\gamma+m^{2}-P^{2} / 4-k^{2}\right.}
\end{aligned}
$$

$\alpha=5.48, \mu / \mathrm{m}=0.2, \mathrm{M} / \mathrm{m}=1.0, \theta=\pi / 16, \mathrm{k}_{\mathrm{v}} / \mathrm{m}=0.067$

- Calculate 「 using $\Delta^{-1} \chi \Delta^{-1}$
- 「 has singularities at $k_{0}^{ \pm}=$
$\sqrt{(m+\mu)^{2}+\vec{k}^{2}} \pm \frac{M}{2}$
- $\chi(k ; P)$ contains constituent poles at $k \cdot p= \pm\left(k^{2}-m^{2}+M^{2} / 4\right)$, as well as above singularities

Spacelike and (almost) timelike BS Amplitudes

Castro et al, JPCS 1291, 012006 (2019)

- $\Gamma\left(k_{0}, \vec{k}\right)$ has singularities at $k_{0}^{ \pm}=\sqrt{(m+\mu)^{2}+\vec{k}^{2}} \pm \frac{M}{2}$
- $\chi=\Delta \Gamma \Delta$ has additional singularities due to the mass poles in the constituents $\Delta(P / 2 \pm k)$

LFWF from Covariant Bethe-Salpeter Amplitude

work in progress, w. Ydrefors, de Paula, Frederico, Jia, ...
Project BSA $\chi(k ; P)=\Delta(k+P / 2) \Gamma(k ; P) \Delta(-k+P / 2)$ onto the light-front to obtain the LFWF $\psi\left(x, k_{\perp}\right)$

$$
\psi\left(x, k_{\perp}\right)=i P^{+} x(1-x) \int_{-\infty}^{\infty} \frac{d k^{-}}{2 \pi} \chi(k ; P)
$$

- Can be done with Nakanishi representation for χ
- Can be approximated by un-Wick rotating the BSE from the spacelike region and project

$$
\psi_{\theta}\left(k^{+}, k_{\perp}\right)=i M\left(\frac{1}{2}+\frac{k^{+}}{M}\right)\left(\frac{1}{2}-\frac{k^{+}}{M}\right) \int \frac{d k^{-}}{2 \pi} \chi\left(k_{\theta} ; p\right)
$$

where $k_{\theta}=\left(k_{0} \exp (i \theta), \vec{k}\right)$, and $k^{ \pm}=k_{0} \pm k_{3}$

- In the limit $\theta \rightarrow 0$, the 'quasi' LFWF $\psi_{\theta}\left(k^{+}, k_{\perp}\right)$ becomes the LFWF $\psi\left(x, k_{\perp}\right)$ with $x=\frac{1}{2}+\frac{k^{+}}{M}$

Example: LFWF for scalar model

work in progress, w. Ydrefors, de Paula, Frederico, Jia, ...

- Perfect agreement for 'quasi' LFWF $\psi_{\theta}\left(k^{+}, k_{\perp}\right)$ at $\theta>0$ between independent calculations using the Nakanishi Intergral Representation and by un-Wick rotating the BSE from the spacelike region

LFWF from covariant Bethe-Salpeter Eqn

- Finite domain $0<x<1$ arises naturally as θ decreases
- No need to constrain range on k^{+}
- However, as k_{\perp} increases, one needs very small values of θ
- Can take the limit $\theta \rightarrow 0$ with NIR

Asymptotic behavior of LFWF

Work in progress Ydrefors, de Paula, Frederico, Jia, ...

- Asymptotic behavior LFWF $1 / k_{\perp}^{4}$ recovered in limit $\theta=0$
- For $\theta>0$, asymptotic behavior 'quasi' LFWF $1 / k_{\perp}^{5}$
- As θ decreases, $\psi_{\theta}\left(k^{+}, k_{\perp}\right)$ approaches $\psi_{0}\left(k^{+}, k_{\perp}\right)$ even for large k_{\perp}, but one may need very small θ

Valence distribution amplitudes

- Distribution amplitudes

$$
\phi(x)=\int \frac{d^{2} k_{\perp}}{(2 \pi)^{2}} \psi\left(x, k_{\perp}\right)
$$

- Finite range in x emerges automatically in limit $\theta \rightarrow 0$
- Analogously, transverse 'distribution amplitudes'

$$
\Phi\left(k_{\perp}\right)=\int_{0}^{1} \frac{d x}{2 x(1-x)} \psi\left(x, k_{\perp}\right)
$$

- Correct asymptotics only in limit $\theta \rightarrow 0$
- Can be computed directly in Euclidean metric with correct asymptotics

$$
\Phi\left(k_{1}, k_{2}\right)=\int \frac{d k_{3} d k_{4}}{(2 \pi)} \chi(k ; P)
$$

Valence probability

- Valence probability from projected BSA

$$
\mathcal{P}=\int_{0}^{1} \frac{d x}{x(1-x)} \int \frac{d^{2} k_{\perp}}{2(2 \pi)^{3}}\left|\psi\left(x, k_{\perp}\right)\right|^{2}
$$

- $\mathcal{P} \sim 0.65$ to 0.8 for moderate and strong binding
- $\mathcal{P} \rightarrow 1$ in the limit of zero binding

Frederico, Salmè, Viviani, PRD89 016010 (2014)

- BSA also contains contributions from $|q \bar{q} g\rangle$ Fock sectors as is also evident from the singularities at

$$
k_{0}^{ \pm}=\sqrt{(m+\mu)^{2}+\vec{k}^{2}} \pm \frac{M}{2}
$$

Castro et al, JPCS 1291, 012006 (2019)

- Calculate (light-front) observables directly from BSA instead of projecting BSA on the LFWF, and computing observables from LFWF

Application to QCD: pion LFWF from BSE

Chao Shi, Cloet, PRL 122, 082301 (2019)

$$
\begin{aligned}
\psi_{(\uparrow \downarrow-\downarrow \uparrow)}\left(x, \vec{k}_{\perp}^{2}\right) & =\sqrt{3} i \int \frac{d k^{+} d k^{-}}{2 \pi} \operatorname{Tr}\left[\gamma^{+} \gamma_{5} \chi(k, p)\right] \delta\left(x p^{+}-k^{+}\right) \\
\psi_{\uparrow \uparrow}\left(x, \vec{k}_{\perp}^{2}\right) & =-\sqrt{3} i \int \frac{d k^{+} d k^{-}}{2 \pi} \frac{1}{\vec{k}_{\perp}^{2}} \operatorname{Tr}\left[i \sigma_{+i} \vec{k}_{\perp}^{i} \gamma_{5} \chi(k, p)\right] \delta\left(x p^{+}-k^{+}\right)
\end{aligned}
$$

- Quark propagators parametrized by two pairs of c.c. poles
- Use dominant BS amplidudes proportional to γ_{5} and $P A_{5}$
- Note: LFWF in terms of dressed quark propagators which evolve from constituent quarks at small momenta to current quarks at large momenta

Conclusions and Outlook

- Quarkonium forms an ideal system to develop and validate methods to compute Light-Front Wave Functions
- even simpler: scalar Yukawa model
- Conventionally
- obtain LFWF as eigenfunctions of effective LF Hamiltonian
- typically limited to minimal Fock space
- Fock space convergence
- can achieve convergence in scalar Yukawa model but have to go beyond minimal Fock space
- LFWF can be obtained from Bethe-Salpeter Equation
- qualitatively similar quarkonia results using confining effective LF Hamiltonian and confining CST model
- use Nakanishi representation or explicit rotation of p_{0} from Euclidean to Minkowski axis
- BSA contains more information than minimal Fock space
- Outlook
- project meson BSA onto LF wavefunction
- use BSA directly to calculate LF observables

