Double parton distributions of the pion in the NJL model

Wojciech Broniowski1,2 and Enrique Ruiz Arriola3

1Institute of Nuclear Physics PAN, Cracow
2Jan Kochanowski U., Kielce
3U. of Granada

Light Cone 2019
École Polytechnique, Palaiseau, 16-20 September 2019
Motivation for multi-parton distributions

- **Old story (Fermilab), renewed interest (e.g., ATLAS measurement for pp → W+2 jets 2013)** [Kuti, Weiskopf 1971, Konishi, Ukwa, Veneziano 1979, Gaunt, Stirling 2010, Diehl, Ostermeier, Schäfer 2012, ...], reviews: Bartalani et al. 2011, Snigirev 2011, Rinaldi, Ceccopieri 2018] (see Matteo Rinaldi’s talk this afternoon)

- **Model exploration** [MIT bag: Chang, Manohar, Waalewijn 2013], valon [WB+ERA 2013], constituent quarks: Rinaldi, Scopetta, Vento 2013, Rinaldi, Scopetta, Traini, Vento 2018]

Double parton scattering

[example from Łuszczak, Maciuła, Szczurek 2011]

DPS can be comparable to SPS at the LHC

Assumption: $D_{gg}(x_1, x_2, b) = g(x_1)g(x_2)F(b)$

– no correlations, transverse-longitudinal factorization
Intuitive probabilistic definition:

Multi-parton distribution = probability distribution that struck partons have LC momentum fractions \(x_i \)

Field-theoretic definition of (spin-averaged) sPDF and dPDF [Diehl, Ostermeier, Schaeffer 2012] of a hadron with momentum \(p \):

\[
D_j(x) = \int \frac{dz^-}{2\pi} e^{ixz^-p^+} \langle p \mid O_j(0, z) \mid p \rangle \bigg|_{z^+=0, z=0}
\]

\[
F_{j_1j_2}(x_1, x_2, y) = 2p^+ \int dy^- \frac{dz_1^-}{2\pi} \frac{dz_2^-}{2\pi} e^{i(x_1z_1^- + x_2z_2^-)p^+} \times \langle p \mid O_{j_1}(y, z_1) O_{j_2}(0, z_2) \mid p \rangle \bigg|_{z_1^+=z_2^+=y^+=0, z_1=z_2=0}
\]

\[
O_q(y, z) = \frac{1}{2} \bar{q}(y - \frac{z}{2}) \gamma^+ q(y + \frac{z}{2}), \ldots
\]

\(y \) plays the role of the transverse distance between the two quarks

\(v^\pm = (v^0 \pm v^3)/\sqrt{2} \)
dPDF in momentum space

Fourier transform in y

$$F_{j_1 j_2}(x_1, x_2, y) \rightarrow \tilde{F}_{j_1 j_2}(x_1, x_2, q)$$

Special case of $q = 0$:

$$D_{j_1 j_2}(x_1, x_2) = \tilde{F}_{j_1 j_2}(x_1, x_2, q = 0)$$
Gaunt-Stirling sum rules

Fock-space decomposition on LC + conservation laws →

\[
|P\rangle = \sum_N \int d[x, k]_N \Phi(\{x_i, k_i\}) |\{x_i, k_i\}\rangle_N \\

\begin{align*}
&\quad d[x, k]_N = \prod_{i=1}^{N} \left[\frac{dx_i d^2 k_i}{\sqrt{2(2\pi)^3 x_i}} \right] \delta \left(1 - \sum_{i=1}^{N} x_i \right) \delta(2) \left(1 - \sum_{i=1}^{N} k_i \right)
\end{align*}
\]
Fock-space decomposition on LC + conservation laws →

\[\sum_i \int_0^{1-x_2} dx_1 \ x_1 D_{ij}(x_1, x_2) = (1-x_2)D_j(x_2) \quad \text{(momentum)} \]

\[\int_0^{1-x_2} dx_1 \ D_{i\text{val}j}(x_1, x_2) = (N_{i\text{val}} - \delta_{ij} + \delta_{\bar{i}j})D_j(x_2) \quad \text{(quark number)} \]

\(A_{i\text{val}} \equiv A_i - A_{\bar{i}} \)

\[N_{i\text{val}} = \int_0^1 dx \ D_{i\text{val}}(x) \]

- Preserved by DGLAP evolution
- Non-trivial to satisfy with the (guessed) function
- Checked in light-front perturbation theory and in lowest-order covariant calculations in [Diehl, Plößl, Schäfer 2019]

Important and fundamental constraints!
Simple example (valon model)

$|\Lambda\rangle = |uds\rangle$ (to avoid the complications of indistinguishable partons)

$$D_{uds}(x_1, x_2, x_3) = f(x_1, x_2, x_3)\delta(1 - x_1 - x_2 - x_3)$$

$$D_{ud}(x_1, x_2) = \int dx_3 D_{uds}(x_1, x_2, x_3) = f(x_1, x_2, 1 - x_1 - x_2)$$

$$D_{us}(x_1, x_3) = \ldots$$

$$D_u(x_1) = \int_0^{1-x_1} dx_2 D_{ud}(x_1, x_2) = \int_0^{1-x_1} dx_3 D_{us}(x_1, x_3)$$

$$\int_0^{1-x_1} dx_2 x_2 D_{ud}(x_1, x_2) + \int_0^{1-x_1} dx_3 x_3 D_{ud}(x_1, x_3)$$

$$= \int dx_2 dx_3 (x_2 + x_3) D_{uds}(x_1, x_2, x_3) = \int dx_2 dx_3 (1 - x_1) D_{uds}(x_1, x_2, x_3)$$

$$= (1 - x_1) D_u(x_1)$$
Attempts of bottom-up construction

- Gaunt, Stirling (2011)

\[D_{ij}(x_1, x_2) = D_i(x_1) D_j(x_2) \frac{(1 - x_1 - x_2)^2}{(1 - x_1)^{2+n_1}(1 - x_2)^{2+n_2}} \]

(do not satisfy the GS sum rules)

- Lewandowska, Golec-Biernat 2014

\[D_{ij}(x_1, x_2) = \frac{1}{1 - x_2} D_i \left(\frac{x_1}{1 - x_2} \right) D_j(x_2) \]

... (no parton exchange symmetry, negative \(D_{qq} \) at large \(x \))

- Can never be unique: marginal projections do not determine the two-particle distribution

Problems!
Construct the multiparticle distribution (model, data?) and go down with marginal projections

[cf. a similar in spirit “top-down” study by M. Rinaldi et al. 2018 with the Brodsky - de Teramond AdS/CFT soft wall pion wave function]
Chiral quark models

- χ_{SB} breaking \rightarrow massive quarks
- Point-like interactions
- Soft matrix elements with pions (and photons, W, Z)
- Large-N_c \rightarrow one-quark loop
- Regularization

Pion - Goldstone boson of χ_{SB}, fully relativistic $q\bar{q}$ bound state of the Bethe-Salpeter equation

Quantities evaluated at the quark model scale (where constituent quarks are the only degrees of freedom)
Chiral quark models

- \(\chi_{SB} \) breaking \(\rightarrow \) massive quarks
- Point-like interactions
- Soft matrix elements with pions (and photons, \(W, Z \))
- Large-\(N_c \) \(\rightarrow \) one-quark loop
- Regularization

Pion – Goldstone boson of \(\chi_{SB} \), fully relativistic \(q\bar{q} \) bound state of the Bethe-Salpeter equation

Need for evolution
Gluon dressing, renorm-group improved
sPDF in NJL

[Davidson, Arriola, 1995]

\[q_{\text{val}}(x; Q_0) = 1 \times \theta[x(1 - x)] \]

(proper treatment of symmetries with regularization)

Quarks are the only degrees of freedom, hence saturate the sPDF sum rules:

\[\int_0^1 dx \, q_{\text{val}}(x; Q_0) = 1 \text{ (valence), } 2 \int_0^1 dx \, x q_{\text{val}}(x; Q_0) = 1 \text{ (momentum)} \]
Scale and evolution

QM provide non-perturbative result at a low scale Q_0

$$F(x, Q_0)|_{\text{model}} = F(x, Q_0)|_{\text{QCD}}, \quad Q_0 - \text{the matching scale}$$

Quarks carry 100\% of momentum at Q_0, adjusted such that when evolved to $Q = 2$ GeV, they carry the experimental value of 47\% (radiative generation of gluons and sea quarks)

LO DGLAP evolution

$Q_0 = 313^{+20}_{-10}$ MeV

NLO close to LO

$$\sim (1 - x)^p \frac{4C_F}{\beta_0} \log \frac{\alpha(Q_0)}{\alpha(Q)}$$
Pion valence quark PDF, NJL vs E615

points: Fermilab E615 Drell-Yan, $\pi^{\pm} W \rightarrow \mu^+ \mu^- X$

band: QM + LO DGLAP from $Q_0 = 313^{+20}_{-10}$ MeV to $Q = 4$ GeV

Many predictions for related quantities of the pion: DA, GPD, TDA, TMD, quasi/pseudo DA/PDF...
dPDF of the pion in NJL model

\[D_{ud}(x_1, x_2) = 1 \times \delta(1 - x_1 - x_2) \theta(x_1) \theta(x_2) \]

- Special case of the valon model
- GS sum rules satisfied
- ... at the quark-model scale → need for evolution
dDGLAP evolution in the Mellin space

[Kirschner 1979, Shelest, Snigirev, Zinovev 1982]: method of solving dDGLAP based on the Mellin moments, similarly to sPDF

\[M_j^n = \int_0^1 dx \, x^n \, D_j(x), \quad M_{j_1 j_2}^{n_1 n_2} = \int_0^1 dx_1 \int_0^1 dx_2 \, \theta(1-x_1-x_2) \, x_1^{n_1} \, x_2^{n_2} \, D_{j_1 j_2}(x_1, x_2) \]

\[\frac{d}{dt} M_{j_1 j_2}^{n_1 n_2} = \sum_i P_{i \to j_1}^{n_1} M_{i j_2}^{n_1 n_2} + \sum_i P_{i \to j_2}^{n_2} M_{j_1 i}^{n_1 n_2} + \sum_i \left(P_{i \to j_1 j_2}^{n_1 n_2} + \tilde{P}_{i \to j_1 j_2}^{n_1 n_2} \right) M_{i}^{n_1+n_2} \]

\[t = \frac{1}{2\pi \beta} \log \left[1 + \alpha_s(\mu) \beta \log(\Lambda_{\text{QCD}}/\mu) \right] \text{ (single scale for simplicity), } \beta = \frac{11N_c - 2N_f}{12\pi} \]

(inhomogeneous term from coupling to sPDF’s)

For valence-valence distributions there are no partons \(i \) decaying into a pair of valence quarks \((P_{i \to j_1 j_2} = 0) \) \(\rightarrow \) inhomogeneous term vanishes

\[
\begin{align*}
\text{dPDF :} & \quad \frac{d}{dt} M_{j_1 j_2}^{n_1 n_2}(t) = \left(P_{j_1 \to j_1}^{n_1} + P_{j_2 \to j_2}^{n_2} \right) M_{j_1 j_2}^{n_1 n_2}(t) \\
\text{sPDF :} & \quad \frac{d}{dt} M_j^n(t) = P_{j \to j}^{n} M_j^n(t)
\end{align*}
\]
Solution

[10 lines in Mathematica (!)]

\[M_j^n(t) = e^{P_{j\rightarrow j}(t-t_0)} M_j^n(t_0) \]
\[M_{j_1j_2}^{n_1n_2}(t) = e^{[P_{j_1\rightarrow j_1} + P_{j_2\rightarrow j_2}](t-t_0)} M_{j_1j_2}^{n_1n_2}(t_0) \]

inverse Mellin transform:

\[D_j(x; t) = \int_C \frac{dn}{2\pi i} x^{-n-1} M_j^n(t) \]
\[D_{j_1j_2}(x_1, x_2; t) = \int_C \frac{dn_1}{2\pi i} x_1^{-n_1-1} \int_{C'} \frac{dn_2}{2\pi i} x_2^{-n_2-1} M_{j_1j_2}^{n_1n_2}(t) \]

\(n \) and \(n' \) are complex variables and the contours \(C \) and \(C' \) lie right to singularities of \(M \)

- correlations \(M_{j_1j_2}^{n_1n_2}(t) \neq M_{j_1}^{n_1}(t) M_{j_2}^{n_2}(t) \) – no separability
- valence-valence: \(M_{j_1j_2}^{n_1n_2}(t)/[M_{j_1}^{n_1}(t) M_{j_2}^{n_2}(t)] \) independent of \(t \)
$x_1 x_2 D^\pi_{ud} (x_1, x_2)$
$D_{u\bar{d}}^{\pi^+}(x_1, x_2) - \text{log scale}$

\begin{align*}
\mu &= 0.8\text{GeV} \\
\mu &= 2\text{GeV} \\
\mu &= 10^3\text{GeV} \\
\mu &= 10^{12}\text{GeV}
\end{align*}
\[\frac{D_{u \bar{d}}^{\pi^+}(x_1, x_2)}{D_u(x_1)D_{\bar{d}}(x_2)} \]

\(\mu = 0.8 \text{GeV} \)

\(\mu = 2 \text{GeV} \)

\(\mu = 10^3 \text{GeV} \)

\(\mu = 10^{12} \text{GeV} \)
Gluon correlation

[Golec-Biernat, Lewandowska, Serino, Snyder, Staśto 2015]

\[x_2 = 0.01 \]

\[D_{gg}^{Q^2} = \begin{cases} 1 \text{ GeV}^2 \\
10 \text{ GeV}^2 \end{cases} \]

\[\text{our prod} \]

\[\text{ratio} \]

\[Q^2 = \begin{cases} 1 \text{ GeV}^2 \\
10 \text{ GeV}^2 \end{cases} \]
Gluon correlation

[Golec-Biernat, Lewandowska, Serino, Snyder, Staśto 2015]

$x_2 = 0.5$

W. Broniowski (IFJ PAN & UJK)
Valence moments in NJL

\[
\frac{\langle x_1^nx_2^m \rangle}{\langle x_1^n \rangle \langle x_2^m \rangle} = \frac{(1+n)!(1+m)!}{(1+n+m)!} \quad (\text{NJL, any scale})
\]

(independent of the evolution scale)

Double moments reduced compared to product of single moments

[lattice results coming shortly, Zimmermann et al.]
Top-down strategy of constructing multi-parton distributions → formal features guaranteed, in particular GS sum rules
Phenomenological sPDF’s as constraints
NJL → valon initial condition, \(\text{const} \times \delta(1 - x_1 - x_2) \), dDGLAP
Correlations decrease with increasing evolution scale and are probably not very important (±25%) in the range probed by experiments, justifying the product ansatz in that limit
Moments measure the \(x_1 - x_2 \) factorization breaking; can be verified in forthcoming lattice calculations