

Utrecht University

Heovy-ion collisions of LHC and RHIC

Barbara Trzeciak Utrecht University

Light Cone 16-20.09.2019

Outline

→ Introduction

→ Global properties → Soft probes and collectivity → Hard probes

b – impact
parameter →
collision centrality $N_{part} - number of
participants
<math display="block">N_{coll} - number of
binary collisions$

→ Selection of topics

10" 0 5000 10000 15000 20000 VZERO amplitude (arb. units)

ALICE Pb-Pb at \(s_{NN} = 2.76 \) TeV + Data - NBD-Glauber fit \(P_{\mu,k} \) \(f \) \(p_{part} + (1-f) \) \(coll \) = 1-0.801, \(\mu = 29.3, k = 1.6 \)

Evolution of heavy-ion collisions

• Description of the heavy-ion collision dynamics from the underlying QCD still challenging

- Bulk dominated by the hydrodynamic expansion
 - Knowledge of the initial state required

Small systems → increased sensitivity to initial state

Early times, Pre-equilibrium

- Early times → classical field evolution
- Energy deposition models, based on:

CGC, phenomenology, AdS/CFT (Shockwave collisions)

Non-equilibrium models:

QCD kinetic theory, Boltzmann RTA, Boost invariant holography AdS/CFT

early times

Pre-equilibrium

- Consequences of pre-equilibrium: bulk isotropisation, entropy production, chemical equilibration
- In thermal equilibrium: conservation of entropy per unity rapidity (Bjorken)
- Entropy production (dN_{ch}/dη) dominated by the initial state, pre-equilibrium dynamics spoils sensitivity
- -> strong sensitivity to global features of initial conditions (ε_n , Ψ_n , dS/d η ,...)
- -> small effects of pre-equilibrium dynamics on typical observables (v_n,<p_T>,...)

Global properties, soft probes

- Soft probes
 - Charged-particle multiplicity, particle yields, elliptic flow, transverse momentum spectra
 - Bulk matter properties, thermodynamic and transport properties of matter

Charged-particle multiplicity, dN/dn

- → Related to the initial energy density and collision geometry
- → Large energy density of the created medium
 - ϵ ~12 GeV/fm³ at t=1 fm/c (2.76 TeV) $_{PRC\ 94\ (2016)\ 034903}$ \approx
- → N_{ch} ~21000 particles produced in central Pb-Pb collisions at 5.02 TeV

 $dN/d\eta vs N_{par}$

- → Deviation from N_{part} scaling at RHIC and LHC
- → Steeper rise in most central collisions
- → Collision geometry plays an importation role in particle production

dN/dn vs models

- Models do not describe charged-particle production in the whole rapidity range
- N_{part} dependence described by rcBK-MC:
 CGC saturation model based on Balitsky-Kovchegov gluon evolution equation

Chemical composition

- → Production at chemical freeze-out
 - Inelastic collisions cease
 - Abundances of different hadron species fixed
 - Integrated particle yields → conditions at chemical freeze-out

17/09/19

Chemical composition

- → Production at chemical freeze-out
 - Inelastic collisions cease
 - Abundances of different hadron species fixed
 - Integrated particle yields → conditions at chemical freeze-out
- → Described by statistical/thermal models with grand canonical ensemble

S. Wheaton et al., Comp. Phys. Comm. 180, 84 (2009) A. Andronic et al., Phys. Lett. B 673, 142 (2009), erratum ibid 678, 516 (2009) G. Torrieri et al., Comp. Phys. Comm. 167, 229 (2005); 175, 635 (2006); 185, 2056 (2014)

Final state interactions

→ Described by statistical/thermal models with grand canonical ensemble.

- → Particle yields measured at kinetic freeze-out. Depend on:
 - Initial yields after chemical freeze-out
 - Lifetime of hadronic phase
 - Resonance decays
 - Scattering cross-section of decay products
 - Baryon final state annihilation?

ALICE Preliminary

o p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

 \square Pb-Pb $\sqrt{s_{_{
m NN}}}$ = 5.02 TeV

ALICE

- pp √s = 2.76 TeV
- ♦ pp √s = 7 TeV

 \times p-Pb $\sqrt{s_{NN}}$ = 5.02 TeV

■ Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

STAR

★ pp √s = 200 GeV

☆ Au-Au $\sqrt{s_{NN}}$ = 200 GeV

- EPOS3

-- EPOS3 (UrQMD OFF)

 $\begin{array}{c} \text{Lifetime (fm/c)} \\ \rho^0 \, < \, K^{*0} \, < \, \Lambda^* \, \, < \, \varphi \\ \text{1.3} \, < \, 4.2 \, < \, 12.6 \, < \, 46.2 \end{array}$

Thermodynamic properties

→ Described by statistical/thermal models with grand canonical ensemble.

- Three parameters: T_{ch} , μ_{B} , V
- \rightarrow With increasing $\sqrt{s_{NN}}$:
 - $\mu_{\scriptscriptstyle B}$ decreases, vanishes at LHC
 - T_{ch} increases up to SPS energies then saturated at ~160 MeV, close to the QGP phase boundary temperature from lattice QCD

ρ_⊤ distributions

- → Low ρ_T (< 2,3 GeV):
 - Bulk-matter (collective phenomena)
 LHC > 95% of the produced particles,
 non-perturbative QCD regime
- \rightarrow Intermediate ρ_T :
 - Fragmentation vs recombination
- → High ρ_T (> 8-10 GeV):
 - Hard processes, energy loss
- → Hardening of the spectra with centrality

ρ_T distributions, mean ρ_T

- → Low ρ_T (< 2,3 GeV):
 - Bulk-matter (collective phenomena)
 LHC > 95% of the produced particles,
 non-perturbative QCD regime
- → Intermediate ρ_{T} :
 - Fragmentation vs recombination
- → High ρ_{T} (> 8-10 GeV):
 - Hard processes, energy loss
- → Hardening of the spectra, increase in mean ρ_⊤ with centrality
 - \rightarrow mass ordering of $\langle \rho_{\top} \rangle$
- → Described by models of hydrodynamic expansion of the medium (radial expansion of the medium)

ALI-PREL-158289

Kinetic freeze-out

- ρ_T distributions described by models of hydrodynamic expansion of the medium (radial flow)
- → Fluido-dynamical description via blast-wave
 - Flow velocity $<\beta_{T}>$, increases with centrality
 - T_{kin} decreases with centrality and energy

- Blast-wave: simplified hydrodynamic model
 - Description of ρ_T spectra with three parameters m_T , $<\beta_T>$ and T_{kin} $\beta_T\to radial$ flow velocity, $T_{kin}\to kinetic$ freeze-out temperature
 - Fit depends on particle species and used ranges

Strangeness production

- Strangeness enhancement: QGP signature
- → Significant enhancement of strange to nonstrange particle production
- → Smooth evolution with multiplicity, from small to large systems
- → Plateau in Pb-Pb consistent with statistical hadronisation model expectations
- → Magnitude of strangeness enhancement increases with strange-quark content
- → Hadron chemistry driven by multiplicity (system size)
- → Effect related to strangeness content rather that mass

ALT-PREL-321075

QGP: Collectivity in the system

- → Multiple interactions between the constituents of the medium → flow
- → Common velocity field for all particles induced during the expansion → radial flow
 - Collision geometry: initial spacial anisotropy
 - → initial spacial anisotropy → azimuthal anisotropies in particle momentum distributions

QGP: Collectivity in the system

- → initial spacial anisotropy → azimuthal anisotropies in particle momentum distributions
- → Fourier expansion:

$$E\frac{d^3N}{d^3p} = \frac{1}{2\pi} \frac{d^2N}{p_T dp_T dy} \left(1 + 2\sum_{n=1}^{\infty} v_n \cos[(\varphi - \Psi_n)] \right)$$
$$v_n(p_T, y) = \langle \cos[n(\varphi - \Psi_n)] \rangle$$

 v_1 : directed flow v_2 : elliptic flow v_3 : triangular flow

Azimuthal anisotropy – elliptic flow

- Low ρ_T (<2 GeV/c): mass ordering collective radial flow velocity, isotropic expansion
- ρ_T ~2.5 GeV/c: crossing between v_2 of mesons and baryons
- ρ_T > 2.5~8 GeV/c: baryon-meson grouping baryon v₂ > meson v₂, flow driven by quark content
- Φ meson follows mass ordering at low $\rho_{\scriptscriptstyle T}$ and quark contents at intermediate $\rho_{\scriptscriptstyle T}$

Azimuthal anisotropy – elliptic flow

- Low ρ_T (<2 GeV/c): mass ordering collective radial flow velocity, isotropic expansion
- ρ_T ~2.5 GeV/c: crossing between v₂ of mesons and baryons
- ρ_T > 2.5~8 GeV/c: baryon-meson grouping baryon v₂ > meson v₂, flow driven by quark content
- Φ meson follows mass ordering at low $\rho_{\scriptscriptstyle T}$ and quark contents at intermediate $\rho_{\scriptscriptstyle T}$
- v₂ increase with collision energy
 - Increase of the average transverse momentum of the hadrons; described by hydrodynamics

Fluctuations in the initial geometry

• important in central collisions

- \Rightarrow Constrains on medium transport properties shear and bulk viscosity (η , ζ /s)
 - + initial state

QGP viscosity

- → Constraining QGP viscosity and the initial state Bayes approach
 - → Input from measurements at different energies: multiplicity, flow, p_T spectra

Bayesian fit: 9 parameters constraining initial state and viscosity

- \rightarrow Very small shear viscosity (η /s) ~0.12-0.2
- → Bulk viscosity still hard to constrain (and understand)

J. E. Bernhard et al, PRC 94, 024907

25

Hard probes

- Medium properties studied via parton modification in the medium
- \rightarrow High- ρ_T partons and heavy quarks
 - Collisional and radiative parton energy loss, flavour and mass dependence
 - Dependence on medium properties and traversed path lengths

- → Quarkonia: suppression of different states due to colour screening
 - "QGP thermometer"

Charged-particle R_{AA}

Nuclear modification factor, R_{AA}

$$R_{AA} = \frac{1}{\langle T_{AA} \rangle} \frac{dN_{AA} / dp_T}{d\sigma_{nn} / dp_T} \equiv \frac{[medium]}{[vacuum]}$$
 T_{AA} : nuclear overlap function

- \rightarrow Low ρ_{τ} (< 2,3 GeV):
 - Thermal regime
 - Hydrodynamic expansion driven by pressure gradients
 - Radial flow peak, mass ordering
- \rightarrow Intermediate ρ_T :
 - Kinetic regime (not described by hydro)
 - Different R_{AA} for different hadron species
 - Features described with in-medium hadronization via quark recombination
- \rightarrow High ρ_{T} (> 8-10 GeV):
 - Partons from hard scatterings
 - Lose energy while traversing the QGP
 - Hadronisation via fragmentation → same R_{AA} for all species

Charged-particle R_{AA}

- Nuclear modification factor, R_{AA}
- → Suppression in AA due to final state effects
- $R_{AA} = \frac{1}{\left\langle T_{AA} \right\rangle} \frac{dN_{AA} / dp_{T}}{d\sigma_{pp} / dp_{T}} \equiv \frac{[medium]}{[vacuum]}$
- Control experiment: no suppression for photons, W and Z⁰ bosons

28

Charged-particle R_{AA}

- Nuclear modification factor, R_{AA}
- → Suppression in AA due to final state effects
- → Increases with centrality and energy

$$R_{_{AA}} = \frac{1}{\left\langle T_{_{AA}} \right\rangle} \frac{dN_{_{AA}} / dp_{_{T}}}{d\sigma_{_{pp}} / dp_{_{T}}} \equiv \frac{[medium]}{[vacuum]}$$

Jets

- More direct connection between the ρ_T and direction of the measured jet and the ones of the initial parton
- → Strong suppression persists up to 1 TeV
- → Jet v₂ up to 100 GeV

Heavy-flavour probes

- \bullet Produced at early stage of the collisions, m > $\Lambda_{\rm QCD}$, experience the whole medium evolution
- → Intermediate ρ_T: indication of flavour dependence of the energy loss (sensitivity to fragmentation, ρ_T shape)
- \rightarrow High ρ_T : flavour independent suppression
- → Charm *feels the shape* of the QGP

PRL 123 (2019) 022001

Transport properties of the QGP

 \rightarrow Comparison of R_{AA} and v_2 measurements to models

Agrees with light flavour:

$$\frac{\hat{q}}{T^3} \approx \begin{cases} 4.6 \pm 1.2 & \text{at RHIC,} \\ 3.7 \pm 1.4 & \text{at LHC,} \end{cases}$$

Burke et al, JET Collaboration, PRC 90, 014909

17/09/19

- ${\color{blue} \Rightarrow}$ Data provide significant constraints on T, ρ dependence of ${\color{gray}q}^{\hat{}}$ and ${\color{gray}D_s}$
 - More data available for the fits
- → Emerging consistent understanding of light and heavy-flavour, medium expansion and transport 32

J/ψ suppression

- → Low p_T: more suppressed at RHIC in central and semi-central
- \rightarrow High ρ_{τ} : hint of smaller suppression at RHIC, higher temperature?
- Significant regeneration contribution to charmonia production at low ρ_{τ} , central collisions, especially at LHC
- Contribution from feed-down

arXiv:1905.13669

17/09/19

Upsilon sequential suppression

- → Negligible (small) regeneration component
- → Sequential suppression of Upsilon states?
- → Contribution from feed-down

Upsilon suppression

- → Agreement with model using anisotropic hydrodynamics evolution with different initial temperatures
- → And with CNM and small regeneration component

$$550 < T_0 < 800 \text{ MeV}$$

PRD 97, (2018) 016017 PRC 96, (2017) 054901

35

Summary

- → Consistent picture of QGP emerging
- → Important step forwards in the understanding of QCD at extreme conditions of high temperature and energy density
 - Wealth of results from RHIC and LHC experiments in the last years
 - Tremendous progress also on the theoretical side towards an "heavy-ion standard model"

→ Small systems important for HI studies: ρρ/ρA → AA evolution

36

Backup

Low mass dielectrons, STAR

- → Measurements of e-e+ distributions over broad momentum range, Au+Au at different energies
- → Compared to cocktail from known sources (excluding vacuum rh0)
- → Clear excess seen in low-mass region

Low mass dielectrons, STAR

- → Excess compared to Rapp & PHSD calculations
 - Contributions from broadened rh0, other decays, QGP radiation
 - Both calculations describe excess well for 0.4<M_{ee}<0.75 GeV
 - Good agreement over broad energy range (also for NA60 In+In)
- → But: low-mass e— e+ yield for ρ_T < 0.15 GeV/c not explained by cocktail w/

Also: PRC 99 024002 (2019) PRC 81 034911 (2010)

Sensitivity to the initial state

→ Dependent on fine details of the initial energy density distribution

Direct photons

- → Direct photons photons not originating from hadronic decays but produced in electromagnetic interactions in course of collision
- → Photons are produced at different collision times
- → Photons don't interact strongly and carry out information about collision, even the earliest stage

41 17/09/19

Direct photons in ALICE

 \rightarrow At low ρ_{T} 2-3 GeV/c

- \sim 8%-15% excess in 0-20%;
- ~ 8%-9% in 20-40%
- \rightarrow At high ρ_T above ~5 GeV/c in agreement with NLO ρ QCD and JETPHOX

→ Agreement with hydro models

Effective temperature

- \rightarrow Effective temperature can be extracted from the low- $\rho_{\scriptscriptstyle T}$ part of the spectrum
- → Both absolute yield of direct photons and effective slope increase with increasing of the collision energy

Direct photon flow in Pb-Pb

- \rightarrow Large v_2 for ρ_T < 3 GeV/c, comparable to hadron flow for 20-40% too large uncertainties for conclusions
- → Hydro models underpredict direct photon low → models need further development
- → Hint for late direct photons production, and early flow formation

Phys. Lett. B 789 (2019) 308-322

Photon yields

1805.04084 (PRL)

pen charm vs models – CMS

Probes

- It is mostly from the final state hadrons measured in the experimental apparatus that one tries to deduce information about the initial state and the collision history
- The investigation of the creation of the QGP and the study of its properties is thus relying on appropriate experimental observables (so-called "signatures") and their comparison to models
- To extract the properties of the produced matter different experimental observables are being optimized to probe the dynamical evolution of the system and characterize the different stages of the collision.
- The characterization of the created partonic matter in terms of its initial conditions (eccentricity, volume, temperature, lifetime), equation-of-state (relating pressure and energy) and of its transport properties (viscosity and diffusion coefficients)
- Soft probes
 - Charged-particle multiplicity, elliptic flow: bulk matter properties
 - Transverse momenta spectra and nuclear modification factor: thermodynamic and transport properties of matter

52 17/09/19

Lattice QCD

Phys. Rev. D 80 014504

One of the fundamental questions in QCD phenomenology:

53

Fluctuations in the initial geometry – backup

- → Fluctuations in initial geometry, nucleon position and their fluctuations dictate the eccentricity → development of higher harmonics
- → Important in central collisions

Fluctuations in the initial geometry – backup

→ Fluctuations in initial geometry → development of higher harmonics, v₃...

Particle suppression

Photo-nuclear dijet production

- Motivation: restrict nuclear parton distribution functions (nPDF) at low x
- nPDF exhibit non-trivial behavior:
 - suppression at low x called "shadowing"
 - enhancement at larger x called "anti-shadowing"
 - suppression at the largest x called "EMC effect"

$$f_i^{p/A}(x, Q^2) = R_i^A(x, Q^2) f_i^p(x, Q^2)$$

Spousta, SQM

UPC

58

v_n across systems

arXiv:1904.11519