Overview of GPDs

Paweł Sznajder National Centre for Nuclear Research, Poland

QCD on the Light Cone: from Hadrons to Heavy Ions, Palaiseau, September 16th, 2019

- Introduction
- Experimental campaign
- Recent progress
- Summary

Introduction

Nucleon is not a point-like particle, it is made out of partons:

- valence quarks
- sea quarks
- gluons

How can we recover basic properties of nucleon from those of its constituents?

- charge
- spin
- mass

How partons are distributed inside nucleon?

- momentum (longitudinal and transverse)
- position
- polarisation
- mechanical properties

from CERN Courier / D. Dominguez

Deeply Virtual Compton Scattering (DVCS)

factorization for $|t|/Q^2 \ll 1$

Chiral-even GPDs: (helicity of parton conserved)

$H^{q,g}(x,\xi,t)$	$E^{q,g}(x,\xi,t)$	for sum over parton helicities
$\widetilde{H}^{q,g}(x,\xi,t)$	$\widetilde{E}^{q,g}(x,\xi,t)$	for difference over parton helicities
nucleon helicity conserved	nucleon helicity changed	

2) Cutting the watermelon with a knife Violent DIS e-A (EIC)

Study of internal structure of a watermelon:

Exclusive measurements

A-A (RHIC) 1) Violent collision of melons

from A. Deshpande EIC@U. of Chicago 14/01/19

3) MRI of a watermelon Non-Violent e-A (EIC) Reduction to PDFs:

no corresponding relations exist for other GPDs

Reduction to Elastic Form Factors (EFFs):

$$\begin{split} \int_{-1}^{1} \mathrm{d}x \, H^q(x,\xi,t) &\equiv F_1^q(t) \qquad \qquad \int_{-1}^{1} \mathrm{d}x \, E^q(x,\xi,t) \equiv F_2^q(t) \\ \int_{-1}^{1} \mathrm{d}x \, \widetilde{H}^q(x,\xi,t) &\equiv g_A^q(t) \qquad \qquad \int_{-1}^{1} \mathrm{d}x \, \widetilde{E}^q(x,\xi,t) \equiv g_P^q(t) \end{split}$$

Polynomiality - non-trivial consequence of Lorentz invariance:

$$\int_{-1}^{1} \mathrm{d}x \ x^{n} H^{q}(x,\xi,t) = h_{0}^{q,n}(t) + \xi^{2} h_{2}^{q,n}(t) + \dots + \mathrm{mod}(n,2) \xi^{n+1} h_{n+1}^{q,n}(t)$$
$$\int_{-1}^{1} \mathrm{d}x \ x^{n} \widetilde{H}^{q}(x,\xi,t) = \tilde{h}_{0}^{q,n}(t) + \xi^{2} \tilde{h}_{2}^{q,n}(t) + \dots + \mathrm{mod}(n+1,2) \xi^{n} \tilde{h}_{n}^{q,n}(t)$$

Positivity bounds - positivity of norm in Hilbert space, e.g.:

$$\left(1-\xi^2\right)\left(H^q-\frac{\xi^2}{1-\xi^2}E^q\right)^2+\frac{t_0-t}{4m^2}\left(E^q\right)^2\leq q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)$$

$$q(x, \mathbf{b}_{\perp}) = \int \frac{\mathrm{d}^2 \mathbf{\Delta}}{4\pi^2} e^{-i\mathbf{b}_{\perp} \cdot \mathbf{\Delta}} H^q(x, 0, t = -\mathbf{\Delta}^2)$$

Study of long. polarization with GPD \widetilde{H} Study of distortion in transv. polarized nucleon with GPD E

Impact parameter \mathbf{b}_{\perp} defined w.r.t. center of momentum, such as

 $\sum x \, \mathbf{b}_{\perp} = 0$

Energy momentum tensor in terms of form factors:

$$\langle p', s' | \widehat{T}^{\mu\nu} | p, s \rangle = \overline{u}(p', s') \left[\frac{P^{\mu}P^{\nu}}{M} A(t) + \frac{\Delta^{\mu}\Delta^{\nu} - \eta^{\mu\nu}\Delta^{2}}{M} C(t) + M\eta^{\mu\nu} \overline{C}(t) + \frac{P^{\mu}i\sigma^{\nu\lambda}\Delta_{\lambda}}{4M} \left[A(t) + B(t) + D(t) \right] + \frac{P^{\nu}i\sigma^{\mu\lambda}\Delta_{\lambda}}{4M} \left[A(t) + B(t) - D(t) \right] u(p, s)$$

Total angular momentum

$$A^{q}(0) + B^{q}(0) = \int_{-1}^{1} x \left[H^{q}(x,\xi,0) + E^{q}(x,\xi,0) \right] = 2J^{q}$$

Ji's sum rule

"Mechanical" forces acting on quarks, e.g. pressure in nucleon center

$$p(0) = \frac{1}{6\pi^2 M} \int_{-\infty}^{0} dt \sqrt{-t} t C(t)$$

GPDs accessible in various production channels and observables \rightarrow experimental filters

DVCS Deeply Virtual Compton Scattering **TCS** *Timelike Compton Scattering*

HEMP Hard Exclusive Meson Production **UPC** Ultra Peripheral Collisions

more production channels sensitive to GPDs exist!

GPDs studied in various laboratories \rightarrow need to cover a broad kinematic range

experiments

closed active planned

Kinematic cuts used in our recent analyses:

Cross-section for single photon production $(l + N \rightarrow l + N + \gamma)$:

calculable within QED

parametrised by CFFs

CFF - the most basic GPD-sensitive observables

 \rightarrow

- analogy with connection between structure functions and PDFs

imaginary part

$$Im\mathcal{G}(\xi,t) = \pi G^{(+)}(\xi,\xi,t) = \pi \sum_{q} e_q^2 G^{q(+)}(\xi,\xi,t)$$

 $G^{q(+)}(x,\xi,t) = G^{q}(x,\xi,t) \mp G^{q}(-x,\xi,t)$ $G^{q(+)}(\xi,\xi,t) = G^{q_{\text{val}}}(\xi,\xi,t) + 2G^{q_{\text{sea}}}(\xi,\xi,t)$

"-" for
$$G \in \{H, E\}$$
"+" for $G \in \{\widetilde{H}, \widetilde{E}\}$

real part

$$\begin{aligned} ℜ\mathcal{G}(\xi,t) = \mathrm{P.V.} \int_0^1 G^{(+)}(x,\xi,t) \left(\frac{1}{\xi-x} \mp \frac{1}{\xi+x}\right) \mathrm{d}x \\ ℜ\mathcal{G}(\xi,t) = \mathrm{P.V.} \int_0^1 G^{(+)}(x,x,t) \left(\frac{1}{\xi-x} \mp \frac{1}{\xi+x}\right) \mathrm{d}x + C_G(t) \\ &C_H(t) = -C_E(t) \qquad C_{\widetilde{H}}(t) = C_{\widetilde{E}}(t) = 0 \end{aligned}$$

Relation between subtraction constant and D-term:

$$C_{G}^{q}(t) = 2 \int_{-1}^{1} \frac{D^{q}(z,t)}{1-z} dz \equiv 4D^{q}(t)$$

 $z = \frac{x}{\xi}$

where

Decomposition into Gegenbauer polynomials:

$$D^{q}(z,t) = (1-z^{2}) \sum_{i=0}^{\infty} d_{i}^{q}(t) C_{2i+1}^{3/2}(z)$$

Connection to EMT FF:

$$D^{q}(t) = \sum_{\substack{i=1\\\text{odd}}}^{\infty} d_{i}^{q}(t)$$

$$d_1^q(t) = 5C^q(t)$$

"Direct" measurement at low-x

COMPASS Collaboration, Phys. Lett. B793 (2019) 188

Slope of t-dependance:

related to transverse extension of quarks:

$$\langle r_{\perp}^2(x_{\rm Bj})\rangle \approx 2\langle B(x_{\rm Bj})\rangle$$

under following assumptions:

- single-exponential dependence
- dominance of CFF Im#
- negligible "skewness effect"
 H(x, x, t) ~ H(x, 0, t)

which are applicable at low-x

Local fits and de-skewness procedure at high-x

Dupre, Guidal, Vanderhaeghen, Phys. Rev. D95 (2017) no. 1, 011501 Dupré, Guidal, Niccolai, Vanderhaeghen, Eur. Phys. J. A53 (2017) no. 8, 171

The procedure:

1. Fit CFFs separately in each (x_B, t, Q²) bin of data

2. Fit extracted ImH values with

 $Im\mathcal{H}(\xi, t, Q^2) = A(\xi) \exp(B(\xi)t)$

$$A(\xi) = a_A \frac{1 - \xi}{\xi}$$
$$B(\xi) = a_B \ln(1/\xi)$$
$$\xi \approx \frac{x_B}{2 - x_B}$$

• Global fits with skewness dependance encoded in Ansatz

H. Moutarde, PS, J. Wagner, Eur. Phys. J. C78 (2018) 11, 890

$$\begin{aligned} G^q(x,x,t) &= G^q(x,0,t) \ g^q_G(x,x,t) \\ g^q_G(x,x,t) &= pdf^q_G(x) \ \exp(f^q_G(x)t) \\ g^q_G(x,x,t) &= \frac{a^q_G}{(1-x^2)^2} \left(1 + t(1-x)(b^q_G + c^q_G \log(1+x))\right) \\ f^q_G(x) &= A^q_G \log(1/x) + B^q_G(1-x)^2 + C^q_G(1-x)x \end{aligned}$$

Allows for a global fit of both elastic FF and DVCS data

Global fits with skewness dependance encoded in Ansatz

H. Moutarde, PS, J. Wagner, Eur. Phys. J. C78 (2018) 11, 890

 $Q^2 = 2 \text{ GeV}^2$

No recent progress here :-(

Need for more neutron data or data taken with transversely polarized targets

Need for modern GPD models to access H/E(x, const ξ , t=0) from exclusive data

Elastic data provide important constraints on GPDs E (however, only for valance contribution), see for instance Eur. Phys. J. C73 (2013) no. 4, 2397

Subtraction constant

V.D. Burkert, L. Elouadrhiri, F.X. Girod, Nature 557 (2018) no. 7705, 396

The procedure:

1. Extract subtraction constant using KM model and CLAS data

2. Fit extracted values with

$$d_1(t) = d_1(0) \left(1 - \frac{t}{M^2}\right)^{-\alpha}$$

without JLab 6 GeV data with JLab 6 GeV data with JLab 12 GeV data (projected)

Subtraction constant

Dedicated softwares to study GPDs:

GeParD

see e.g. K. Kumericki's talk at "Prospects for extraction of GPDs" workshop, Warsaw 2019 PARTONS

Eur. Phys. J. C78 (2018) 6, 478 http://partons.cea.fr Dedicated softwares to study GPDs:

GeParD

- conformal space evolution of GPDs: up to NLO and partialy to NNLO (conformal scheme)
- unpol. DIS hard-scattering coefficient functions to NNLO
- unpol. DVCS hard-scattering coefficient functions to NNLO
- unpol. DVMP hard-scattering coefficient functions to NLO (not thoroughly tested)
- Compton Form Factors
- DVMP transition form factor
- small-x $\sigma^{\mbox{\tiny DVCS}}$ and $\sigma^{\mbox{\tiny DV\rhoP}}$
- complete (Belitsky, Muller et al.) DVCS formulas
- all measured DVCS observables

PARTONS

- GPD models: GK, VGG, Vinnikov (evolution), MPSSW13 (NLO study), MMS13 (DD study)
- DVCS CFFs: LO, NLO, NO Noritzsch, DR
- DVCS formulas: VGG, GV, BMJ
- all kinds of DVCS observables
- GPD evolution: Vinnikov code

next release with TCS coming soon! work on DVMP ongoing!

MC generators

Available generators:

- Pythia 6.4 (able to generate exclusive events, but is not very accurate)
- HEPGen (mainly used by COMPASS experiment)
- MILOU (comes from HERA times)
- ...
- All in FORTRAN (makes maintaining, development and integration difficult)
- Clear need for a modern MC generator dedicated to GPD physics \rightarrow EIC!
- Radiative corrections!

What was discussed today?

- Introduction to GPDs
- Recent progress in phenomenology
- Review of available software

Generalised Parton Distributions

- novel way to describe partonic structure of nucleon
- allows to study (highlights):
 - \rightarrow nucleon tomography
 - \rightarrow total angular momentum of partons
 - \rightarrow "mechanical" properties of parton distributions

What was't discussed today?

- Recent theory developments
- Experimental results
- GPD modeling
- Nuclear GPDs
- ...