Timelike Compton Scattering with CLAS12 at Jefferson Lab

Pierre Chatagnon

Institut de Physique Nucleaire d’Orsay
For the CLAS Collaboration

chatagnon@ipno.in2p3.fr

Palaiseau, September 17th, 2019
From **Deeply Virtual Compton Scattering** to **Timelike Compton Scattering**

DVCS ($\gamma^* p \rightarrow \gamma p$)

\[\text{DVCS (} \gamma^* p \rightarrow \gamma p \text{)} \]

TCS ($\gamma p \rightarrow \gamma^* p$)

\[\text{TCS (} \gamma p \rightarrow \gamma^* p \text{)} \]

Compton Form Factors (CFF)

\[\mathcal{H} = \sum_q e_q^2 \left\{ \mathcal{P} \int_{-1}^{1} dx H^q(x, \xi, t) \left[\frac{1}{\xi - x} - \frac{1}{\xi + x} \right] + i\pi [H^q(\xi, \xi, t) - H^q(-\xi, \xi, t)] \right\} \]

Imaginary part

- Measured in DVCS asymmetries
- Accessible in TCS photon polarization asymmetry

Real part

- Accessible in DVCS cross section
- Accessible in TCS in cross section angular modulation

Guidal, Moutarde and Vanderhaeghen (2013)
Physics Motivations

- The CFFs dispersion relation at leading-order and leading twist:

\[
\text{Re}\mathcal{H}(\xi, t) = \mathcal{P} \int_{-1}^{1} dx \left(\frac{1}{\xi - x} - \frac{1}{\xi + x} \right) \text{Im}\mathcal{H}(\xi, t) + D(t)
\]

- D-term expansion

\[
D(t) = \frac{1}{2} \int_{-1}^{1} dz \frac{D(z, t)}{1 - z}
\]

\[
D(z, t) = (1 - z^2)[d_1(t) C_3^{3/2}(z) + ...]
\]

- \(d_1(t)\) is directly related to the pressure distribution in the nucleon.

- Measurement of photon polarization asymmetry will provide a test of universality of GPDs.
$\gamma p \rightarrow e^+ e^- p$

TCS (GPDs)

Bethe-Heitler (Form Factors)

TCS cross section

$$\frac{d^4\sigma}{dQ^2 dt d\Omega} = \sigma_{TCS} + \sigma_{BH} + \sigma_{INT}$$

TCS cross section not large enough to allow meaningful measurement

Use interference term to access GPDs

Berger, Diehl and Pire (2002)
\[\gamma p \rightarrow e^+ e^- p \]

Kinematics

\[Q'^2 = (k + k')^2 \quad t = (p' - p)^2 \]

\[L = \frac{(Q'^2 - t)^2 - b^2}{4} \quad L_0 = \frac{Q'^4 \sin^2 \theta}{4} \quad b = 2(k - k')(p - p') \]

\[\tau = \frac{Q'^2}{2p \cdot q} = \frac{Q'^2}{s-M^2} \quad \xi = \frac{\tau}{2-\tau} \quad s = (p + q)^2 \quad t_0 = -\frac{4\xi^2 M^2}{(1-\xi^2)} \]
\(\gamma p \rightarrow e^+ e^- p \) Cross section and CFFs

Interference cross section

\[
\frac{d^4 \sigma_{\text{INT}}}{dQ'^2 dt d\Omega} = -\frac{\alpha_{\text{em}}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau} \frac{L_0}{L} \frac{\cos(\phi)}{\sin(\theta)} \text{Re} \tilde{M}^{-+} + \ldots
\]

\[
\rightarrow \tilde{M}^{-+} = \frac{2\sqrt{t_0 - t}}{M} \frac{1 - \xi}{1 + \xi} \left[F_1 \mathcal{H} - \xi (F_1 + F_2) \tilde{\mathcal{H}} - \frac{t}{4M^2} F_2 \mathcal{E} \right]
\]

BH cross section

\[
\frac{d^4 \sigma_{\text{BH}}}{dQ'^2 dt d\Omega} \approx -\frac{\alpha_{\text{em}}^3}{2\pi s^2} \frac{1}{-t} \frac{1 + \cos^2(\theta)}{\sin^2(\theta)} \left[(F_1^2 - \frac{t}{4M^2} F_2^2) \frac{2}{\tau^2} \frac{\Delta_T^2}{t} + (F_1 + F_2)^2 \right]
\]

BH cross section diverges at \(\theta \approx 0^\circ \) and \(180^\circ \)

Weighted cross section ratio

\[
R(\sqrt{s}, Q'^2, t) = \frac{\int_0^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^2 dt d\phi}}{\int_0^{2\pi} d\phi \frac{dS}{dQ'^2 dt d\phi}} \frac{dS}{dQ'^2 dt d\phi} = \frac{dS}{dQ'^2 dt d\phi} = \int_{\pi/4}^{3\pi/4} d\theta \frac{L_0}{L} \frac{d\sigma}{dQ'^2 dt d\phi d\theta}
\]
CLAS12 at Jlab

Central Detector
- Time-of-Flight (CTOF)
- Tracking (SVT and MM)
- Neutron detector (CND)

Forward Detector
- Drift Chambers (DC)
- Time-of-Flight (FTOF)
- Calorimeters (Pre-Shower Calorimeter/2 layer EC)
- Cherenkov Counters (HTCC and LTCC)
- RICH
- Forward tagger (FT)

Data Set
- First CLAS12 experiment, data were taken in the Spring and Fall 2018
- Beam energy 10.56 GeV / Liquid hydrogen target
- Two torus magnetic field configurations (Inbending/Outbending electrons)
- Total accumulated charge in the Faraday cup for data shown here : 18 mC ∼ 3% of the proposed total data (100 days at 75nA). Total taken data corresponds to 50% of total proposed data
Data analysis

\[ep \rightarrow e' \gamma p \rightarrow (e') e^+ e^- p' \]

Final state
- Use the CLAS12 reconstruction software PID
- Events with exactly one \(e^+\), one \(e^-\) and one proton are selected

Scattered electron
- Cut on scattered electron missing mass
- Cut on missing transverse momentum of \(ep \rightarrow e^+ e^- pX\) system

Incoming photon
- The real photon is radiated by the beam electron
- Cuts on scattered electron constrain the virtuality of the photon
 \[Q^2 \propto \cos(\Theta_{\text{scattered}}) \]
$e^+ e^- pX$ final state selection

Protons

- Matching β calculated from Time-Of-Flight and momentum from tracking

Leptons

- Number of Cherenkov photons > 2
- Minimum energy deposited in the Pre-Shower Calorimeter (PCAL)
- Cuts on total calorimeters sampling fractions ($E_{deposited}/p$)
Exclusivity cuts

- Scattered electron: \(p_{\text{scattered}}^\mu e^- = p_{\text{beam}}^\mu + p_{\text{target}}^\mu - p_{\text{proton}}^\mu - p_{e^+}^\mu - p_{e^-}^\mu \)

Simulation (e^+e^-p events weighted with BH weight)

Data (inbending)
3% of total proposed data

Low e^+e^- invariant mass spectrum is dominated by vector meson photoproduction \rightarrow Mass cut between the ρ region [$\rho(1450 \text{ MeV})$ and $\rho(1700 \text{ MeV})$] and $J/\psi(3 \text{ GeV})$ \rightarrow The resonance-free mass region between 2 GeV and 3 GeV will be used for the analysis.
Projected results

Experimental cross section ϕ modulation ratio

$$R(\sqrt{s}, Q'^2, t) = \frac{\int_0^{2\pi} d\phi \cos(\phi) \frac{dS}{dQ'^2 dt d\phi}}{\int_0^{2\pi} d\phi \frac{dS}{dQ'^2 dt d\phi}} \rightarrow R' = \frac{\sum \cos(\phi) Y_\phi}{\sum \phi Y_\phi} \text{ where } Y_\phi = \sum_{\theta} \frac{L}{L_0} N^\phi_{\theta} \frac{1}{A^\phi_\theta}$$

Estimate of CLAS12 acceptance with BH simulation

Acceptance in the θ/ϕ plane ($A^\phi_\theta = \frac{N_{REC}}{N_{GEN}}$)

\rightarrow Yellow lines are CLAS12 acceptance limits

\rightarrow Cut regions correspond to events where one lepton goes in the beam pipe (BH peaks are out of CLAS12 acceptance)
Projected results

Generator developed by R. Paremuzyan at Jefferson Lab.

→ Double distribution GPD parametrization

\[H(x, \xi, t) = H_{DD}(x, \xi, t) + \kappa \frac{1}{N_f} \Theta(\xi - |x|) D\left(\frac{x}{\xi}, t\right) \]

- \(R' \) is sensitive to D-term strength within CLAS12 acceptance.
- Full data set (50% of total proposed data) will provide enough statistics to give insight on D-term strength (green points and associated error bars).
Projected results

- \(R' \) is sensitive to D-term strength **BUT** also depends on acceptance limits → difficulties to compare measurement with theoretical models
- Possibility to restore \(\theta \) dependence of the interference cross-section

We want to access the \(\phi \) moment of the cross section. We can measure:

\[
\frac{dS_{TOT}}{dQ'^2 dt d\phi} = \int_{b(\phi)}^{a(\phi)} d\theta \quad \frac{d^4 \sigma_{TOT}}{dQ'^2 dt d\Omega} \quad \frac{L}{L_0} = \frac{dS_{BH}}{dQ'^2 dt d\phi} + \frac{dS_{INT}}{dQ'^2 dt d\phi}
\]

- \(\frac{dS_{BH}}{dQ'^2 dt d\phi} \) is calculable from form factors.
- The \(\theta/\phi \) dependance of the interference term is fully known:

\[
\frac{dS_{INT}}{dQ'^2 dt d\phi} = -\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau\sqrt{1-\tau}} \left[\cos(\phi) \int_{b(\phi)}^{a(\phi)} (1 + \cos^2(\theta)) d\theta \cdot \text{Re} \tilde{M}^- + ... \right]
\]

This method will be implemented at a later stage of the analysis, as it requires good accumulated luminosity estimation.
Conclusion

- Timelike Compton Scattering allows to investigate the real part of CFFs which is difficult to constrain with DVCS.
- No published results on TCS yet.
- Main resonances in the e^+e^- spectrum visible in CLAS12 data.
- Projected statistic will allow insight on the strength of the D-term.

Outlook

- The analysis procedure leading to R' has been developed.
- More statistics is coming from the data processing of the 2018 run.
- Dependence on acceptance limits of R' will be corrected to allow comparison with models and future TCS measurements.