The Delta Functions in PDFs and the QCD Vacuum Structure

Fatma Aslan & Matthias Burkardt

Based on: Matthias Burkardt, Light Front Quantization, 1995 Aslan, Burkardt, Singularities in Twist-3 Quark Distributions, 2018.

Aslan, Burkardt - The Delta Functions in PDFs and the QCD Vacuum Structure

Model calculations of PDFs

Twist-2 pdf	Measurement	Operator
f_1	Spin average	γ+
g_{1}	Helicity difference	γ +γ ₅
h ₁	Helicity flip	$i\sigma^{\perp_+}\gamma_5$

Twist-3 pdf	Measurement	Operator
e	Spin average	1
h_L	Helicity difference	$i\sigma^{+-}\gamma_5$
g _T	Helicity flip	$\gamma \perp \gamma_5$

Singularities in twist-3 quark distributions

Twist-2 PDF	SDM	QTM	Twist-3 PDF	SDM	QTM
f_1	×	×	е	\checkmark	\checkmark
$g_{_1}$	×	×	h _L	\checkmark	\checkmark
h ₁	×	×	$g_{\tau}(g_2)$	\checkmark	×

 \checkmark : There is a $\delta(x)$ & \checkmark : There is no $\delta(x)$

Burkardt, Koike, Violation of sum rules for Twist-3 parton distributions in QCD, 2001.

Aslan, Burkardt, Singularities in Twist-3 Quark Distributions, 2018.

At twist-3 there is something that does not exist in twist-2: There are delta functions.

We identify these delta functions with momentum components in the nucleon state that do not scale as the nucleon is boosted to the infinite momentum.

Singularities in twist-3 quark distributions

 \blacktriangleright The delta functions contribute both to the mass and the qgq correlation term.

 $h_L(x) = h_L^{WW}(x) + h_L^m(x) + h_L^3(x)$

Burkardt & Koike, Violation of Sum Rules for Twist 3 Parton Distributions in QCD, 2001

> They do not go away with regularization.

$\delta(x)$ remains	$\delta(x)$ is recovered
Transverse momentum cut off Dimensional regularization	Pauli-Villars regularization
Adding form factors Adding axial diquark contribution	

Aslan, Burkardt, Lorentz invariance of twist-3 quark distributions, in prep.

Sum rules are violated if they are not taken into account.

$$\int_{-1}^{1} dx g_1(x) = \int_{-1}^{1} dx g_T(x)$$

Burkardt & Koike, Violation of Sum Rules for Twist 3 Parton Distributions in QCD, 2001

The origin of $\delta(x)$: The zero modes

$$g_T(x) = ig^2 \int \frac{d^2k^{\perp}dk^{-}}{(2\pi)^4} \frac{(x + \frac{m}{M})(2k^{-}P^{+} + mM)}{(k^2 - m^2 + i\epsilon)^2 [(P - k)^2 - \lambda^2 + i\epsilon]}$$

$$\text{for } k^{+} \neq 0, \quad \int \frac{dk^{-}}{(k^{2} - m^{2} + i\epsilon)^{2}} = \int \frac{dk^{-}}{\left[2k^{+}\left(k^{-} - \frac{(k_{\perp}^{2} + m^{2})}{2k^{+}} + \frac{i\epsilon}{2k^{+}}\right)\right]^{2}} = 0 \quad \longleftarrow \quad \int \frac{dk^{-}}{(k^{2} - m^{2} + i\epsilon)^{2}} = \frac{i\pi}{k_{\perp}^{2} + m^{2}} \delta(k^{+}).$$

$$\text{for all } k^{+} \quad \int dk^{+} dk^{-} \frac{1}{(k^{2} - m^{2} + i\epsilon)^{2}} = \int d^{2}k_{L} \frac{1}{(k_{L}^{2} - k_{\perp}^{2} - m^{2} + i\epsilon)^{2}} = \frac{i\pi}{k_{\perp}^{2} + m^{2}} \quad \longleftarrow \quad k^{+} = 0$$

Issues with the LF approach

LF time!

- □ Do any conflicts arise with causality on the LF ?
- □ How to keep the IR singularities under control with a "box" ?

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Provide a controlled and well-defined approach to the LF

Lenz, Thies, Yazaki and Levit Hamiltonian formulation of two-dimensional gauge theories on the light cone (1991).

Order of operations and Infinitely many zero modes

Example: Simple tadpole with a mass insertion in 1+1 dimensions.

$$\mathcal{I} = \int \frac{d^2k}{(2\pi)^2} \frac{1}{(k^2 - m^2 + i\epsilon)^2} = \frac{i}{4\pi m^2}$$

$$\mathcal{I}_{\in} = \frac{1}{L} \sum \int \frac{dk^{-}}{2\pi} \frac{1}{\left(\frac{2\epsilon}{L}k^{-2} + 2k^{+}k^{-} - m^{2} + i\epsilon\right)^{2}} = \frac{i}{4\sqrt{2\epsilon L}} \sum \left[\frac{(2\pi n)^{2}}{2\epsilon L} + m^{2}\right]^{-3/2}$$

1 st operation	2 nd operation	Results in	
LF limit (ε→0, L fixed)	Continuum Limit (L $\rightarrow \infty$, ϵ/L fixed)	Divergent contribution from the zero mode	
Continuum Limit (L $\rightarrow \infty$, ϵ/L fixed)	LF limit $(\varepsilon \rightarrow 0, L \text{ fixed})$	Infinitely many zero modes contribute	

Order of operations reveal that there is not only one zero mode but infinitely many.

Aslan, Burkardt-Singularities in Twist-3 Quark Distributions

Aslan, Burkardt-Singularities in Twist-3 Quark Distributions

Aslan, Burkardt-Singularities in Twist-3 Quark Distributions

Aslan, Burkardt-Singularities in Twist-3 Quark Distributions

Aslan, Burkardt-Singularities in Twist-3 Quark Distributions

The discontinuities in GPDs

The divergent part of
$$G_2$$
 is calculated as, $-ig^2 \int \frac{d^2k_{\perp}dk^-}{(2\pi)^4} \frac{k^-8(p^+)^2(1+x)}{\left[(k+\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(k-\frac{\Delta}{2})^2 - m^2 + i\epsilon\right]\left[(p-k)^2 - \lambda^2 + i\epsilon\right]}$.
Using $(P-k)^2 - \lambda^2 = 2(P^+ - k^+)(P^- - k^-) - k_{\perp}^2 - \lambda_{\perp}^2$, k^- in the numerator can be replaced by the following expression

$$k^{-} = \frac{M^{2}}{2p^{+}} \underbrace{\frac{[(p-k)^{2} - \lambda^{2}]}{2(p^{+} - k^{+})}}_{2(p^{+} - k^{+})} - \frac{(k_{\perp}^{2} + \lambda^{2})}{2(p^{+} - k^{+})}$$

The second term cancels the propagator in the denominator leading to the following contribution which is nonzero only in the ERBL region, $-\xi < x < \xi$.

$$ig^{2}4p^{+}\frac{(1+x)}{(1-x)}\int \frac{d^{2}k_{\perp}dk^{-}}{(2\pi)^{4}}\frac{1}{\left[(k+\frac{\Delta}{2})^{2}-m^{2}+i\epsilon\right]\left[(k-\frac{\Delta}{2})^{2}-m^{2}+i\epsilon\right]}.$$

Aslan, Burkardt- Lorentz Invariance of Twist-3 Quark Distributions

What happens in different models ?

CONCLUSIONS

There are singularities at x=0 in higher twist quark distributions.

Twist-2 PDF	SDM	QTM	Twist-3 PDF	SDM	QTM
f1	×	×	е	\checkmark	\checkmark
<i>g1</i>	×	×	hL	\checkmark	\checkmark
h1	×	×	gT (g2)	\checkmark	×

These singularities are related to the zero modes (vacuum)

$$\int \frac{dk^{-}}{(k^{2} - m^{2} + i\epsilon)^{2}} = \frac{i\pi}{k_{\perp}^{2} + m^{2}} \delta(k^{+}).$$

$$P^{-} = \frac{m^{2} + \vec{P}_{\perp}^{2}}{2P^{+}}$$

$$P^{+}$$

CONCLUSIONS

> Using ε -coordinates in LF formalism and the order of taking the continuum and LF limits show that the singularities do not arise from a single zero mode at k⁺=0 but infinitely many zero modes in the vicinity of k⁺=0.

1 st operation	2 nd operation	Results in
Continuum Limit (L $\rightarrow\infty$, ϵ/L fixed)	LF limit (ε→0, L fixed)	Infinitely many modes contribute

Calculating quasi-pdfs shows that: the zero modes spread out as we go away from the light-cone.

CONCLUSIONS

> In the non-forward case, these singularities and the spread of the infinitely zero modes manifest themselves in the ERBL region.

As $\xi \rightarrow 0$ the ERBL region becomes a representation of a Delta function.

J.Collins, LC workshop 2018

- considered $\int d^2x \langle 0 | \phi^2(0) \phi^2(x) | 0 \rangle e^{iqx}$
- for $q^+ = 0$ same pole structure as generalized tadpoles
- naively vanishes for $q^+ = 0$
- \hookrightarrow regulated by taking $q^+ \neq 0$
 - support only for $0 < k^+ < q^+$ $(k^+ (q^+ k^+)$ momentum of one of the particles created by $\phi^2 |0\rangle$
 - $\lim_{q^+\to 0}$ yields finite result
 - in terms of k^+ , rep. of $\delta(k^+)$

connection of singularities in twist-3 GPDs/PDFs

- pole structure similar to above vacuum corellator
- in GPDs $q^+ \neq 0$, 'regulates' $\delta(x)$ present in PDFs
- rep. of $\delta(x)$ as $q^+ \to 0$