Performance of Jet and Missing Transverse Energy Reconstruction with CMS in pp Collisions at $\sqrt{s}=7$ TeV

Joanna Weng

On behalf of the CMS collaboration

Paris, 22 July 2010
Motivation

Jets and MET crucial for many measurements and also important for searches

From “Hadronic Event Shapes in pp Collisions at $\sqrt{s}=7$TeV”, CMS PAS QCD-10-013

From “Search for Dijet Resonances in the Dijet Mass Distribution in pp Collisions at $\sqrt{s}=7$TeV”, CMS PAS EXO-10-001
The CMS Detector
Jet/MET Types in CMS

Default Jet Clustering Algorithm: Anti K_T with $R=0.5$

Calorimeter Jets
Jets clustered from ECAL and HCAL deposits (Calo Towers)
Accordingly:
Calo MET

Jet-Plus-Track Jets (JPT)
Subtract average calorimeter response from CaloJet and replace it with the track measurement
Accordingly:
Tc MET

Particle Flow Jets (PF)
Cluster Particle Flow objects: Unique list of calibrated particles “a la Generator Level”
Accordingly:
PF MET

Track Jets
Reconstructed from tracks of charged particles, independent from calorimetric jet measurements

=> Using different inputs allows CMS to study and constrain experimental systematics
Jet results @ 7 TeV

How well do we understand Jet Energy Scale and Jet Resolution?
Example: Dijets $\Delta \phi$ in Data/MC

Important variable to select a clean dijet sample

$\Delta \phi$

* => Good agreement for all jet types between data and MC
Two Strategies:
MC-truth JEC and In-situ JEC
- Majority of CMS physics analyses currently use **MC-truth JEC**
- MC corrections are derived from PYTHIA QCD dijet MC events
- **In-situ JEC** sub-corrections will replace **MC-truth** corrections when available

Factorized approach:
Two Strategies:

MC-truth JEC and In-situ JEC
- Majority of CMS physics analyses currently use **MC-truth JEC**
- MC corrections are derived from PYTHIA QCD dijet MC events
- **In-situ JEC** sub-corrections will replace MC-truth corrections when available

Factorized approach:
Two Strategies:
MC-truth JEC and In-situ JEC
- Majority of CMS physics analyses currently use **MC-truth** JEC
- MC corrections are derived from PYTHIA QCD dijet MC events
- **In-situ JEC** sub-corrections will replace **MC-truth** corrections when available

Factorized approach:

- **Reconstructed Jets**
 - **Offset**
 - **Rel: \(\eta \)**
 - **Abs: \(p_T \)**

Relative: Correct to make calorimeter response uniform in \(\eta \)
In-situ method: Dijet \(p_T \) balance

Absolute: Correct absolut energy scale
In-situ method: Photon+jet \(p_T \) balance
MPF method
Two Strategies:
MC-truth JEC and In-situ JEC
- Majority of CMS physics analyses currently use **MC-truth JEC**
- MC corrections are derived from PYTHIA QCD dijet MC events
- **In-situ JEC** sub-corrections will replace **MC-truth** corrections when available

Factorized approach:

- **Reconstructed Jets**
 - **Offset**
 - Rel: η
 - Abs: p_T

Relative: Correct to make calorimeter response uniform in η

In-situ method:
- Dijet p_T balance

Absolute: Correct absolut energy scale

In-situ method:
- Photon+jet p_T balance
- MPF method
Relative JEC: dijet p_T balance

Relative JEC removes jet response variation in η
A priori estimate of uncertainty: $\pm 2\% \times |\eta|$

Barrel Jet

- Require at least 2 jets, one jet in the barrel region $|\eta|<1.3$
- Azimuthal separation $\Delta \Phi > 2.7$
- Third jet veto $p_T^{3rd}/p_T^{dijet} < 0.2$

\Rightarrow Measure distributions of balance variable B in representative $(p_T^{dijet}, |\eta|)$ bins for all jet types

$B = \frac{p_T^{probe} - p_T^{barrel}}{p_T^{dijet}}$

$\begin{align*}
 r &= \frac{2+ < B >}{2- < B >} \\
 p_T^{dijet} &= \frac{p_T^{probe} + p_T^{barrel}}{2}
\end{align*}$

r := relative response in a given $(p_T^{dijet}, |\eta|)$ bin
Relative JEC: Data/MC

- Good agreement up to $|\eta| = 2$
- Relative response in data ~10% higher compared to simulation for $|\eta| > 2$

=> Data/MC close to unity after the residual correction
=> Data/MC deviations are covered by conservative η-dependent systematic uncertainty of $\pm 2\% \times |\eta|$
Mean response in Data and MC agrees within 2-3 % in **barrel region**

In **endcap**, the simulated response is systematically lower than data (~4%)
Absolute JEC: photon+jet balance

A-priori estimate of JEC uncertainty in barrel 5% for tracking-based jets (JPT, PFJets, track jets), 10% for CaloJets

- Method employs p_T balance in back-to-back photon+jet events (well measured photon as a reference object)
- Use photon trigger and isolated photons $p_T>15$ GeV and $|\eta|<1.3$
Absolute JEC: photon+jet balance

Photon+jet balance: Bias due to soft veto on second jet

Miss-E_T projection fraction method (MPF, from D0) uses MET to measure the balance and is less sensitive to QCD radiation.

Distributions of "response sensitive" variable R_{MPF} vs p_T^γ

=> Mostly good agreement when same method applied to MC and Data
=> Direct evidence from MPF supports 5%/10% JEC uncertainty as conservative

JOANNA WENG
Jet p_T resolutions

- Define p_T asymmetry of the two leading jets in back-to-back dijet events:
 \[A = \frac{p_T^{jet_1} - p_T^{jet_2}}{p_T^{jet_1} + p_T^{jet_2}} \]

- For approximately equal value of the jet p_T's:
 \[\frac{\sigma(p_T)}{p_T} = \sqrt{2} \sigma_A \]

- Full chain of Dijet Asymmetry method applied to data and MC to extract jet p_T resolutions

=> Observed data/MC agreement within a priori $\sim 10\%$ uncertainty
MET results @ 7 TeV

How well do we model our MET and control MET tails?
Cleaning of MET Tails

Basic cleaning strategy:
identify anomalous signals based on:

- Unphysical charge sharing of neighboring channels
- Timing/pulse shape information

=> Cleaning is very effective
=> After cleaning, MET tail is no longer dominated by anomalous signals
MET in Data /MC

Minimum Bias: Calo MET

11.7 nb⁻¹.

Dijet events with corr. $p_T^{1,2} > 25$ GeV, $|\eta_{1,2}| < 3$:

=> General Agreement between Data and MC
Study of MET distribution in 1-and 2-vertex events in minimum-bias

- MET distributions wider in 2-vertex events
- Reweight 2-vertex events so that the SumE_T distribution matches that of the 1-vertex events
- After reweighting, MET distribution agrees between 1-vertex and 2-vertex events

=> Widening of MET distribution in 2-vertex events due to transverse energy increase in events
MET Resolution vs SumE$_T$

Compare the resolution of different MET types at the same PF SumE$_T$ (closest to real sumE$_T$)

- PF SumE$_T$ is calibrated to generator level Sum E$_T$
- Observed MET sigma is calibrated using photon+jets MC events:

=> PF MET has the best resolution.
=> Tc MET also shows significant improvement w.r.t. Calo MET
First results of the Jet and Missing Transverse Energy performance were presented

Jets:
- General data/MC agreement for jet response and p_T resolutions
- Observations from current data support a priori estimates:
 - 10% (5%) JEC uncertainty for calorimeter jets (jets using tracking)
 - Additional 2% uncertainty per unit rapidity
 - 10% p_T resolution uncertainties for all three jet types

MET:
- Acceptable data/MC agreement
- Improved cleaning, tails are under control
- Tackling the challenge of MET commissioning with large pile up
- Tc MET, and especially PF MET, improve resolution **significantly**

Impressive Jet and MET understanding already after just 3 months of data taking at $\sqrt{s}=7$TeV!
References

- CMS DP-2010/014 -- Jet and MET Commissioning Results from 7 TeV Collision Data
- JME-10-006 -- Commissioning of Track Jets in pp Collisions at $\sqrt{s}=7$TeV
- JME-10-008 -- Single Particle Response in the CMS Calorimeters
- JME-10-003 -- CMS Jet Performance in pp Collisions at $\sqrt{s}=7$TeV
- JME-10-004 -- Missing Transverse Energy Performance in Minimum-Bias and Jet Events from Proton-Proton Collisions at $\sqrt{s}=7$TeV
- ME-10-006 -- Commissioning of Track Jets in pp Collisions at $\sqrt{s}=7$TeV
- JME-10-008 -- Single Particle Response in the CMS Calorimeters
- PFT-10-001 -- Commissioning of the Particle-flow Event Reconstruction with the first LHC Collisions recorded in the CMS detector
- PFT-10-002 -- Commissioning of the Particle-Flow reconstruction in Minimum-Bias and Jet Events from pp Collisions at $\sqrt{s}=7$TeV
- QCD-10-013 -- Hadronic Event Shapes in pp Collisions at $\sqrt{s}=7$TeV
- EXO-10-001 -- Measurement of the Dijet Mass Spectra in pp Collisions at $\sqrt{s}=7$TeV
Backup: CMS Parameters

Tracker: 66M pixel channels, ~10M Si microstrip channels,

Calorimetry: ~75k crystals, ~15k HCAL channels,

Muon System: 250 DT chambers (170k wires), 450 CSC chambers (~200k wires), ~ 500 Barrel RPCs ~ 400 endcap RPCs,

Trigger System: muon and calorimeter trigger system, 40 kHz DAQ system (~ 10k CPU cores),

Grid Computing (~ 50 k cores), Offline (> 2M lines of source code).
Backup : Anti K_T

\[d_{i,j} = \min \left(k_{T,i}^{-2}, k_{T,j}^{-2} \right) \frac{\Delta R_{i,j}^2}{R^2} \]

\[\Delta R_{i,j}^2 = (y_i - y_j)^2 + (\phi_i - \phi_j)^2 \]

- New development in the jet clustering theory.
- Tends to cluster the energy around the hardest particles.
 - essentially behaves like a cone algorithm giving perfectly round jet areas
- Belongs to the “k_T” family.
 - merging of 4-vector pairs based on transverse momentum weighted distance in y-φ plane.
 - the clustering terminates when the weighted distance between particles is greater than a specific value R (resolution parameter).
 - the quantity R is of the order of unity.
- infrared and collinear safe (suitable for theory calculations).
Backup: Offset correction

- **Offset from noise:**
 - Is below 400 (300) MeV in energy (p_T).
 - Simulation gives good description of noise in data.

- **Offset from one pile-up event:**
 - Up to 7 GeV in energy, but stays below 350 MeV in p_T.
 - Pythia Minimum Bias (D6T tune) gives decent description of PU.

- **Probability of pile-up in 2010 data typically ~50% (was ~10% in earlier plots)**

=> Total average offset contribution to jet p_T is small in the current data.

=> No offset correction is applied in the standard JEC chain.
Backup : Absolute JES

- A-priori estimate of JEC uncertainty in barrel 5% for tracking-based jets (JPT, PFJets, track jets), 10% for CaloJets

- Constraints from test beam, jet composition studies and “first principles” (single pion response, π^0 mass peak, tracker resonances)

- Direct evidence from Missing-ET projection fraction method (MPF) supports 5%/10% JEC uncertainty as conservative
Backup: Absolute JES

Photon

\[\rho_T = 76.1 \text{ GeV/c} \]
\[\eta = 0.0 \]
\[\phi = 1.9 \text{ rad} \]

Photon is looking even better:

<table>
<thead>
<tr>
<th></th>
<th>VALUE</th>
<th>ALLOWED RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluster Minor Axis</td>
<td>0.22</td>
<td>0.15 ÷ 0.3</td>
</tr>
<tr>
<td>Cluster Major Axis</td>
<td>0.29</td>
<td>0.15 ÷ 0.35</td>
</tr>
<tr>
<td>ECAL GT Isolation (\Delta R<0.4)</td>
<td>1.7% (E_Y)</td>
<td>< 5% (E_Y)</td>
</tr>
<tr>
<td>HCAL Isolation (\Delta R<0.4)</td>
<td>0.4% (E_Y)</td>
<td>< 5% (E_Y)</td>
</tr>
<tr>
<td>Sum (\rho_T) Tracks (\Delta R<0.35)</td>
<td>0</td>
<td>< 10% (\rho_{T,Y})</td>
</tr>
<tr>
<td>Number of Tracks (\Delta R<0.35)</td>
<td>0</td>
<td>< 3</td>
</tr>
</tbody>
</table>

Anti-\(k_T\) 0.5 PFJet

\[\rho_T = 72.0 \text{ GeV/c} \]
\[\eta = 0.0 \]
\[\phi = -1.2 \text{ rad} \]
Backup: Absolute JEC

Balance "Response" versus p_T^γ

- Measured "response" is lower than MC-truth response
 - Loose second jet veto ($p_T^{2nd} < 0.5 p_T^\gamma$) violates photon-jet p_T balancing and produces downward bias in the measurement.
- Reasonable data/MC agreement when the same p_T balance method is applied to data and simulation
- Pileup test in backups: ~no change with PV=1 cut
Backup: MPF

- Basics of MPF (Missing Momentum Fraction; AN-2010/218)
 - Ideally: \[\vec{p}_T^\gamma + \vec{p}_T^{\text{recoil}} = \vec{0} \]
 - Add in the detector: \[R_\gamma \vec{p}_T^\gamma + R_{\text{recoil}} \vec{p}_T^{\text{recoil}} = -\vec{E}_T^{\text{miss}} \]
 - Solving: \[R_{\text{recoil}}/R_\gamma = 1 + \frac{\vec{E}_T^{\text{miss}} \cdot \vec{p}_T^\gamma}{|\vec{p}_T^\gamma|^2} \equiv R_{\text{MPF}} \]

- \(R_{\text{MPF}} \) is assigned as the response of the recoil jet

- Advantage of MPF: Low sensitivity to extra radiation
 - Smaller error bars: Widths of distributions are narrower thanks to less fluctuations from the impact of extra radiation
 - Smaller bias wrt MC-truth than \(p_T^{\text{jet}}/p_T^\gamma \) for current very loose cuts on extra radiation
 - Helps to fully exploit the accuracy of PF method

- MPF method demonstrates the accuracy of JES for different types of jets more clearly than \(\gamma \)-jet balancing method does
Backup: Absolute MPF

MPF “Response” versus p_T^Y

- Measured “response” is closer to MC-truth response than for p_T balance
- Good data/MC agreement when the same MPF method is applied to data and simulation.
Well measured tracks which do not interact in tracker material are used for measuring response of calorimeter.

- Tracks reconstructed with High Purity quality
- Track Pt > 1.0 GeV/c
- Atleast 8 tracker layers crossed
- No missing hits in the innermost or outermost tracker layers
- Track \((\text{dxy}) < 0.2 \text{ mm}\)
 \(|\text{Track dz}| < 0.2 \text{ mm} \)
 \(\chi^2/\text{ndof} < 5.0 \)
ECAL spikes
- Remove rechits with ET>5 GeV and “1-E4/E1<0.95“
- Remove out-of-time rechits (kOutOfTime and E>2GeV)

HF anomalous signals
- Cut on (L-S)/(L+S) for short fibers (PET algorithm)
- Topological isolation cut for long fibers based on S9/S1 isolation
- Remove rechits with “faulty” pulse shape

HBHE noise in RBX/HPD
- Rejects events with high energy/high hit multiplicity anomalous noise
Backup: Beam Halo

CMS preliminary 2010
\[\sqrt{s} = 7 \text{ TeV} \]

CaloMET for events before the beam-halo filter is applied and for beam-halo tagged events in minimum-bias or jet 15 trigger events

Beam-halo tagged events with highest CaloMET (224 GeV)

Beam halo does not significantly affect MET generally; however, it can cause high MET in an event.
Backup: MET in MinBias Events

- Calorimeter only MET and SumET distributions in minimum-bias events
- Minimum-bias events allow a study of MET tail in least-biased way
- Generator description of minbias events not as reliable as high Pt events

- General agreement between data and MC in both distributions
- MET tail under control after anomalous signal cleaning procedure
 - Slight excess in data attributed to residual noise in HF
- MET distribution slightly wider in data
 - Attributed mainly to imperfect modeling of the HB & HE response
Backup: MET in Multijets

Does MET depend on the jet multiplicity?

- Uncorrected Calo MET in jet events for different SumE_T ranges
- Different jet multiplicity bins (jets w/ p_T > 20 GeV, |η| < 3)

=> MET distribution "primarily" controlled by SumE_T, and not jet multiplicities
Backup: H_T and MH_T

H_T & MH_T explored in various new physics searches

$H_T = \sum p_{T_{jets}}$ and $MH_T = |\vec{H}_T|$ ($\vec{H}_T = -\sum \vec{p}_{T_{jets}}$).

H_T and MH_T studies with Calo, JPT and PF jets
Calculation relies purely on clustered energy
-> more robust alternative, less sensitive to pile-up

(leading jet with $p_T > 40$ GeV, other ets w/$p_T > 20$ GeV, $|\eta| < 5$)

=> Good Agreement between data and MC