${ }^{1}$ Laboratoire de Physique Théorique d'Orsay, ${ }^{2}$ Laboratoire de l'Accélérateur Linéaire, Université Paris-Sud 11, France

Abstract

Recently, the radiative B-decay to the strange axial-vector mesons, $B \rightarrow K_{1}(1270) \gamma$, was observed. This process is particularly interesting as the subsequent K_{1}-decay into its three body final state allows us to determine the polarization of the γ, which is mostly left- (right-)handed for $\bar{B}(B)$ in the SM while various new physics models predict additional right- (left-)handed components. In order to obtain a theoretical prediction for this polarization measurement, it is important to understand the hadronic effects to this decay channel. We first revisit the strong decays of the K_{1} mesons, namely the partial wave amplitudes as well as their relative phases, in the framework of the ${ }^{3} P_{0}$ quark-pair-creation model. Then, we present our result on the sensitivity study of the $B \rightarrow K_{1}(1270) \gamma$ process to the photon polarization. The new method we introduced in this work improves the sensitivity by a factor two compared to the standard angular analysis.

Introduction: why are we interested in photon polarization of b

The rare radiative decay $b \rightarrow s \gamma$ can be described in terms of the effective Hamiltonian:

$$
\mathcal{H}_{e f f}=-\frac{4 G_{F}}{\sqrt{2}} V_{t s} V_{t b}^{*}\left(C_{T} \mathcal{O}_{7 L}+C_{T R} \mathcal{O}_{7 R}\right)
$$

- $c_{7 L}$ describes $b_{R} \rightarrow s_{L} \gamma_{L}$ (left-handed photon)
$C_{T R}$ describes $b_{L} \rightarrow s_{R} \gamma_{R}$ (right-handed photon)

How to measure the photon polarization

Why do we use $\mathrm{B} \rightarrow \mathrm{K}_{1}(1270) \gamma$?

- In [1] it was proposed to use $B \rightarrow K_{\text {res }} \gamma$ decay where the angular distribution of the three body decay of $K_{\text {res }}$ carries the information of the polarization.
- One of the $B \rightarrow K_{\text {res }} \gamma$ modes is finally measured! $\mathcal{B}\left(B^{+} \rightarrow K_{1}^{+}(1270) \gamma\right)=(4.3 \pm 1.2) \times 10^{-5}$ We study in detail the usefulness of this channel to determine the photon polarization

There have been attempts to measure the pho ton polarization by various methods:

- mixing-induced CP-asymmetry in $B^{0} \rightarrow K^{* 0}\left(\rightarrow K_{S} \pi^{0}\right) \gamma$ and $B_{s} \rightarrow \phi \gamma$ $\stackrel{\rightharpoonup}{ }$ transverse asymmetries in
$B^{0} \rightarrow K^{* 0}\left(\rightarrow K^{-} \pi^{+}\right) \ell^{+} \ell^{-}$
- Forward-Backward asymmetry in
$\wedge_{b} \rightarrow \Lambda\left(\rightarrow p \pi^{-}\right) \gamma$
But it has not been seen yet, while LHCb and BFactories have interesting programs concerning this measurement

Two-body decay is NOT good
In the $S M C_{T R} / C_{T L} \approx m_{s} / m_{b}{ }^{*} \Rightarrow$ photon are predominantly left(right)-handed in the $\bar{B}(B)$-decays.
-This property can be not true in some extensions of the SM (LRSM, SUSY and hence one can have an excess of right(left)-handed photons
The measurement of the photon polarization could provide a test

$$
\mathcal{O}_{7 L, R}=\frac{e}{16 \pi^{2}} m_{b} \bar{s} \sigma_{\mu \nu} \frac{1 \pm \gamma_{5}}{2} F^{\mu \nu} b
$$ of physics beyond the SM, namely right-handed currents.

*Here we neglect the QCD corrections and long-distance effects from O_{2}

Formalism

B-reference frame

K_{1}-reference frame

Helicity is conserved $\left(\varepsilon_{\gamma}=\varepsilon_{K_{1}}\right)$
Measurement of the angular θ-distribution of γ with photon polarization.

The decay distribution is obtained as a function of the photon polarization parameter λ_{γ}

$$
\frac{d \Gamma}{d S_{13} d S_{23} d \cos \theta} \propto \frac{1}{4}|\vec{J}|^{2}\left(1+\cos ^{2} \theta\right)+\lambda_{\gamma} \frac{1}{2} \operatorname{lm}\left[\vec{n} \cdot\left(\vec{\jmath} \times \vec{J}^{*}\right)\right] \cos \theta, \quad \lambda_{\gamma}=\frac{\left|C_{7 R}\right|^{2}-\left|C_{7}\right|^{2}}{\left|C_{7 R}\right|^{2}+\left|C_{7 L}\right|^{2}} \quad(*)
$$

In the SM the photon polarization parameter $\lambda_{\gamma} \simeq-1(+1)+\mathrm{O}\left(\mathrm{m}_{\mathrm{s}}^{2} / \mathrm{m}_{\mathrm{b}}^{2}\right)$ for $\bar{B}(B)$ respectively

- The helicity amplitudes of $\bar{K}_{1} \rightarrow \bar{K} \pi \pi$-decay are given by the general form

$$
\mathcal{M}_{L, R}\left(\bar{K}_{1} \rightarrow \bar{K} \pi \pi\right)=\varepsilon_{L, R}^{\mu} \mu_{\mu}, \quad J_{\mu}=c_{1}\left(s_{13}, s_{23}\right) p_{1 \mu}-c_{2}\left(s_{13}, s_{23}\right) p_{2 \mu}
$$

where ε is the polarization vector of $K_{1}, s_{i j}=\left(p_{i}+p_{j}\right)^{2}$.
The decay $K_{1}(1270) \rightarrow K \pi \pi$ proceeds predominantly via $K^{*} \pi(16 \%)$ and $\rho K(42 \%)$ modes. The coefficients $c_{1,2}\left(s_{13}, s_{23}\right)$ can be expressed in terms of the form factors or partial wave amplitudes of the $K_{1} \rightarrow K^{*} \pi, \rho K$ transitions which we calculate using ${ }^{3} P_{0}$ quark model [2].

The mixing angle issue

The observed $K_{1}(1270)$ and $K_{1}(1400)$ are not pure $1^{3} P_{1}\left(K_{1 A}\right)$ or $1^{1} P_{1}\left(K_{1 B}\right)$ states:
$\left|K_{1}(1270)\right\rangle=\left|K_{1 A}\right\rangle \sin \theta_{K_{1}}+\left|K_{1 B}\right\rangle \cos \theta_{K_{1}}$
$\left|K_{1}(1400)\right\rangle=\left|K_{1 A}\right\rangle \cos \theta_{K_{1}}-\left|K_{1 B}\right\rangle \sin \theta_{K_{1}}$

- The mixing angle is essential to understand the K_{1}-decay properties and in particular why
$\mathcal{B}\left(B \rightarrow K_{1}(1400) \gamma\right)<\mathcal{B}\left(B \rightarrow K_{1}(1270) \gamma\right)$ - We find the mixing angle to be $\theta_{K_{1}}=\left(60_{-13}^{+5}\right)^{\circ}$ at 95% C.L. from the fit, combining the ratios of the ρK channels.

${ }^{3} P_{0}$ Qark-Pair-Creation Model

The partial wave amplitudes for the axial-vector meson (A) decay to the ground states of vector (V) and pseudoscalar (P) mesons are given by
$\operatorname{as}^{2}\left(K_{1}(1270) \rightarrow K^{*} \pi / \rho K\right)=S\left(\sqrt{2} \sin \theta_{K_{1}} \mp \cos \theta_{K_{1}}\right)$ $a_{D}\left(K_{1}(1270) \rightarrow K^{*} \pi / \rho K\right)=D\left(-\sin \theta_{K_{1}} \mp \sqrt{2} \cos \theta_{K_{1}}\right)$ $a_{S}\left(K_{1}(1400) \rightarrow K^{*} \pi / \rho K\right)=S\left(\sqrt{2} \cos \theta_{K_{1}} \pm \sin \theta_{K_{1}}\right)$ $a_{D}\left(K_{1}(1400) \rightarrow K^{*} \pi / \rho K\right)=D\left(-\cos \theta_{K_{1}} \pm \sqrt{2} \sin \theta_{K_{1}}\right)$

Previous method of Gronau et al: Up-Down Asymmetry

Gronau et al. [1] defined a very simple observable "Up-Down Asymmetry" which is proportional to the polarization

Count the number of events with photon emitted above/below the $K \pi \pi$-plane and subtract them.
After integrating over the whole Dalitz region one obtains $\mathcal{A}_{\text {up }}-$ down $(0.33 \pm 0.05) \lambda_{\gamma}$ for $B^{+} \rightarrow K_{1}^{+}(1400)(\rightarrow$
$\left.K^{0} \pi^{+} \pi^{0}\right) \gamma$ and $\mathcal{A}_{\text {up }- \text { down }}=(0.05 \div 0.10) \lambda_{\gamma}$ for $B^{+} \rightarrow K_{1}^{+}(1270)\left(\rightarrow K^{+} \pi^{-} \pi^{+}\right) \gamma$.

DDLR method

this work we apply the DDLR method [3], which was first proposed to determine the τ-polarization in $\tau \rightarrow a_{1}(\rightarrow$ $\pi \pi \pi) \nu_{\tau}$ decays. The DDLR method can be applied when the PDF has a linear dependence on the polarizatio parameter λ_{γ} as is the case in our formula in (*).
In DDLR [3] it was demonstrated that in this particular case

$$
\frac{d \Gamma}{d s_{13} d s_{23} d \cos \theta} \propto \underbrace{\frac{1}{4}|\vec{J}|^{2}\left(1+\cos ^{2} \theta\right)}_{\equiv f\left(s_{13}, 2_{23}, \cos \theta\right)}+\underbrace{\lambda_{\gamma}}_{\equiv g\left(s_{13}, S_{23}, \cos \theta\right)}
$$

the value of λ_{γ} can be obtained by the fit to the distribution of the single variable ω

$$
\omega\left(s_{13}, s_{23}, \cos \theta\right) \equiv \frac{g\left(s_{13}, s_{23}, \cos \theta\right)}{f\left(s_{13}, s_{23}, \cos \theta\right)}
$$

instead of the multidimensional fit of f and g.
It is also pointed out that the use of the full kinematic information (not only θ but also s_{13}, s_{23}) increases the sensitivity to the polarization (single variable fit is practical for this reason too)

Results

Compatibility plots of exclusion regions for λ_{γ} in the SM

It is ideal to measure $B \rightarrow K_{1}(1270) \gamma$ and $B \rightarrow K_{1}(1400) \gamma$ at the same time, so that we could have a better control for the resonances.
However, using $B \rightarrow K_{1}$ form factors calculated in [4], we expect about 40 times less $B \rightarrow K_{1}(1400) \gamma$ events compared to $B \rightarrow K_{1}(1270) \gamma$.
The large error in the $K_{1}(1400)^{+}$channel is originated from the fact that $K_{1}(1400)^{+} \rightarrow K^{+} \pi^{-} \pi^{+}$proceeds only via $K^{* 0} \pi^{+}$mode \Rightarrow No source for the imaginary part.

Conclusions

We investigate the $B \rightarrow K_{1} \gamma$ decay in order to determine the photon polarization of the quark-level $b>$
The use of the single variable $\omega\left(s_{13}, s_{23}, \cos \theta\right)$, which contains all the information on polarization in each event avoids the complex multi-dimensional fit and enhances the sensitivity of the measurement.
New method gives a gain in accuracy of a factor 2 compared to the fit of pure $\cos \theta$-distribution, integrated the Dalitz region.
In our study we obtain the statistical accuracy of 6% for the SM-prediction for λ_{γ} for 10 k events of
$B^{+} \rightarrow K_{1}^{+}(1270)\left(\rightarrow K^{+} \pi^{-} \pi^{+}\right) \gamma$ decay.
Future experiments, LHCb and Super-B factories have good prospectives for the study of this channel. One expects an annual yield of about several dozens thousands of signal events at LHCb and several thousands at Super-B.

References

[^0]
[^0]: [1] M. Gronau, Y. Grossman, D. Pirjol and A. Ryd, Phys. Rev. Lett. 88 (2002) 051802.
 [2] A. Le Yaouanc, L. Oliver, O. Pène and J. C. Raynal, Phys. Rev. D 8 (1973) 2223.
 [3] M. Davier, L. Duflot, F. Le Diberder and A. Rougé, Phys. Lett. B 306 (1993) 411
 [4] H. Hatanaka and K. C. Yang, Phys. Rev. D 77 (2008) 094023.

