

Determining the photon polarization of the radiative $B \rightarrow K_1(1270)\gamma$ decay

Andrey Tayduganov^{1,2} in collaboration with Emi Kou² and Alain Le Yaouanc¹

¹Laboratoire de Physique Théorique d'Orsay, ²Laboratoire de l'Accélérateur Linéaire, Université Paris-Sud 11, France

Abstract

Recently, the radiative B-decay to the strange axial-vector mesons, $B \to K_1(1270)\gamma$, was observed. This process is particularly interesting as the subsequent K_1 -decay into its three body final state allows us to determine the polarization of the γ , which is mostly left- (right-)handed for $\overline{B}(B)$ in the SM while various new physics models predict additional right- (left-)handed components. In order to obtain a theoretical prediction for this polarization measurement, it is important to understand the hadronic effects to this decay channel. We first revisit the strong decays of the K_1 mesons, namely the partial wave amplitudes as well as their relative phases, in the framework of the $^{3}P_{0}$ quark-pair-creation model. Then, we present our result on the sensitivity study of the $B \rightarrow K_{1}(1270)\gamma$ process to the photon polarization. The new method we introduced in this work improves the sensitivity by a factor two compared to the standard angular analysis.

Introduction: why are we interested in photon polarization of $b \rightarrow s\gamma$?

- In the SM $C_{7R}/C_{7L} \approx m_s/m_b^* \Rightarrow$ photons are predominantly left(right)-handed in the $\overline{B}(B)$ -decays.
- This property can be not true in some

Previous method of Gronau et al.: Up-Down Asymmetry

Gronau et al. [1] defined a very simple observable "Up-Down Asymmetry" which is proportional to the polarization parameter λ_{γ} :

$$\mathcal{A}_{up-down} = \frac{\int_0^1 d\cos\theta \frac{d\Gamma}{d\cos\theta} - \int_{-1}^0 d\cos\theta \frac{d\Gamma}{d\cos\theta}}{\int_{-1}^1 d\cos\theta \frac{d\Gamma}{d\cos\theta}} = \frac{3}{4} \frac{\lambda_{\gamma}}{\int \frac{ds_{13}ds_{23}lm[\vec{n}(\vec{J}\times\vec{J}^*)]}{\int ds_{13}ds_{23}|\vec{J}|^2}}$$

Count the number of events with photon emitted above/below the $K\pi\pi$ -plane and subtract them. After integrating over the whole Dalitz region one obtains $A_{up-down} = (0.33 \pm 0.05)\lambda_{\gamma}$ for $B^+ \to K_1^+(1400)(\to 0.05)\lambda_{\gamma}$ $\mathcal{K}^0\pi^+\pi^0\gamma$ and $\mathcal{A}_{up-down} = (0.05 \div 0.10)\lambda_{\gamma}$ for $B^+ \to \mathcal{K}_1^+(1270)(\to \mathcal{K}^+\pi^-\pi^+)\gamma$.

DDLR method

In this work we apply the DDLR method [3], which was first proposed to determine the τ -polarization in $\tau \to a_1(\to z)$ $\pi\pi\pi$) ν_{τ} decays. The DDLR method can be applied when the PDF has a linear dependence on the polarization parameter λ_{γ} as is the case in our formula in (*).

• In DDLR [3] it was demonstrated that in this particular case

$$d\Gamma \qquad 1_{1} \overrightarrow{i}_{2} (1 + 2 n) + \overline{1}_{1} (1 + \overline{i}_{2} + \overline{i}_{2} + 1) = 0$$

The rare radiative decay $b \rightarrow s\gamma$ can be described in terms of the effective Hamiltonian:

$$\mathcal{H}_{eff} = -\frac{4G_F}{\sqrt{2}} V_{ts} V_{tb}^* (C_7 \mathcal{O}_{7L} + C_{7R} \mathcal{O}_{7R})$$
$$\mathcal{O}_{7L,R} = \frac{e}{16\pi^2} m_b \overline{s} \sigma_{\mu\nu} \frac{1 \pm \gamma_5}{2} F^{\mu\nu} b$$

• C_{71} describes $b_R \rightarrow s_1 \gamma_1$ (left-handed photon) • C_{7R} describes $b_L \rightarrow s_R \gamma_R$ (right-handed photon)

How to measure the photon polarization

Why do we use $B \rightarrow K_1(1270)\gamma$?

• In [1] it was proposed to use $B \to K_{res} \gamma$ decay where the angular distribution of the three body decay of K_{res} carries the information of the polarization. • One of the $B \rightarrow K_{res}\gamma$ modes is finally measured!

 $\mathcal{B}(B^+ \to K_1^+(1270)\gamma) = (4.3 \pm 1.2) \times 10^{-5}$

• We study in detail the usefulness of this channel to determine the photon polarization.

Two-body decay is NOT good

extensions of the SM (LRSM, SUSY, ...) and hence one can have an excess of right(left)-handed photons.

 \Rightarrow The measurement of the photon polarization could provide a test of physics beyond the SM, namely right-handed currents.

*Here we neglect the QCD corrections and long-distance effects from \mathcal{O}_2

There have been attempts to measure the photon polarization by various methods:

- mixing-induced CP-asymmetry in $B^0 \to K^{*0} (\to K_S \pi^0) \gamma \text{ and } B_s \to \phi \gamma$
- ► transverse asymmetries in $B^0 \rightarrow K^{*0} (\rightarrow K^- \pi^+) \ell^+ \ell^-$
- ► Forward-Backward asymmetry in $\Lambda_b \to \Lambda(\to p\pi^-)\gamma$ But it has not been seen yet, while LHCb and B-Factories have interesting programs concerning this measurement.

 $\pi^{-}(\vec{p}_{2})$

 $\frac{p_1 \times p_2}{|\vec{p}_1 \times \vec{p}_2|}$

 $\pi^{+}(\vec{p}_{1})$

 K_1 -reference frame

 $K^{+}(\vec{p}_{3})$

$$\overline{ds_{13}ds_{23}d\cos\theta} \propto \underbrace{\frac{1}{4}}_{\equiv f(s_{13},s_{23},\cos\theta)} + \underbrace{\lambda_{\gamma}}_{2} \underbrace{\frac{1}{2}}_{\equiv g(s_{13},s_{23},\cos\theta)} = g(s_{13},s_{23},\cos\theta)$$

the value of λ_{γ} can be obtained by the fit to the distribution of the single variable ω

$$\omega(s_{13}, s_{23}, \cos\theta) \equiv \frac{g(s_{13}, s_{23}, \cos\theta)}{f(s_{13}, s_{23}, \cos\theta)}$$

instead of the multidimensional fit of f and g.

• It is also pointed out that the use of the full kinematic information (not only θ but also s_{13}, s_{23}) increases the sensitivity to the polarization (single variable fit is practical for this reason too).

Maximum likelihood method

• Our probability density function can be written as

 $W(\xi) = f(\xi) + \frac{\lambda_{\gamma}g(\xi)}{\lambda_{\gamma}g(\xi)}$

where ξ represents the kinematic variables $(s_{13}, s_{23}, \cos \theta)$. • Then, the log-likelihood function for a sample of Nmeasurements is:

$$\ln \mathcal{L} = \ln \prod_{i=1}^{N} W(\xi_i) = \sum_{i=1}^{N} \ln(1 + \lambda_{\gamma} \omega_i)$$

+ other terms independent of λ_{γ}

• Using the maximum likelihood method, we obtain λ_{γ} as a solution of the following equation:

$$\frac{\partial \ln \mathcal{L}}{\partial \lambda_{\gamma}} = \sum_{i=1}^{N} \frac{\omega_{i}}{1 + \lambda_{\gamma} \omega_{i}} = N \left\langle \frac{\omega}{1 + \lambda_{\gamma} \omega} \right\rangle = 0$$

Notice: the resulting
$$\lambda_\gamma$$
 depends only on ω

Results

Approximate solution for λ_{γ}

• In particular case $\lambda_{\gamma}\omega\ll 1$

$$rac{\partial \ln \mathcal{L}}{\partial \lambda_{\gamma}} \simeq N(\langle \omega
angle - rac{\lambda_{\gamma}}{\langle \omega^2
angle}) = 0 =$$
 $\lambda_{\gamma} \simeq rac{\langle \omega
angle}{\langle \omega^2
angle}$

• Furthermore, we obtain the variance from

$$\frac{1}{\sigma_{\lambda}^{2}} = -\frac{\partial^{2} \ln \mathcal{L}}{\partial \lambda_{\gamma}^{2}} = N \left\langle \left(\frac{\omega}{1 + \lambda_{\gamma} \omega} \right)^{2} \right\rangle \Rightarrow$$
$$\sigma_{\lambda}^{2} \simeq \frac{1}{N\left(\langle \omega^{2} \rangle - 2 \frac{\langle \omega \rangle \langle \omega^{3} \rangle}{\langle \omega^{2} \rangle} \right)}$$

That means that no fit is needed to extract λ_{γ} , one only has to sum ω and ω^2 over all the events.

Formalism

- Helicity is conserved ($\varepsilon_{\gamma} = \varepsilon_{K_1}$).
- Measurement of the angular θ -distribution of γ with respect to the $K\pi\pi$ decay plane \Leftrightarrow measurement of the photon polarization.

The decay distribution is obtained as a function of the photon polarization parameter λ_{γ} :

 $\frac{d\Gamma}{ds_{13}ds_{23}d\cos\theta} \propto \frac{1}{4}|\vec{J}|^2 (1+\cos^2\theta) + \frac{\lambda_{\gamma}}{2} lm[\vec{n}\cdot(\vec{J}\times\vec{J}^*)]\cos\theta, \qquad \lambda_{\gamma} = \frac{|C_{7R}|^2 - |C_{7L}|^2}{|C_{7R}|^2 + |C_{7L}|^2}$

In the SM the photon polarization parameter $\lambda_{\gamma} \simeq -1(+1) + O(m_s^2/m_b^2)$ for $\bar{B}(B)$ respectively.

• The helicity amplitudes of $\overline{K}_1 \to \overline{K}\pi\pi$ -decay are given by the general form:

$$\mathcal{A}_{L,R}(\bar{K}_1 \to \bar{K}\pi\pi) = \varepsilon^{\mu}_{L,R}J_{\mu}, \quad J_{\mu} = c_1(s_{13}, s_{23})p_{1\mu} - c_2(s_{13}, s_{23})p_{2\mu}$$

$\rightarrow K_1^+(1270) (\rightarrow K^+\pi^-\pi^+) \gamma$

Expected $\lambda_{\gamma}^{(SM)}$ from $B \to K_1(1270)\gamma$:					
N _{event}	$B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$	$B^+ ightarrow K^0 \pi^+ \pi^0 \gamma$			
1k	1.00±0.18	1.00 ± 0.12			
10k	1.00±0.06	1.00 ± 0.04			

	ed $\lambda_{\gamma}^{\left(SM ight) }$ from E	
N _{events}	$B^+ \to K^+ \pi^- \pi^+ \gamma$	$B^+ \to K^0 \pi^+ \pi^0 \gamma$
1k	0.93±0.60	1.00 ± 0.07
10k	0.92±0.20	1.00±0.02
L	<u>.</u>	·

It is ideal to measure $B \to K_1(1270)\gamma$ and $B \to K_1(1400)\gamma$ at the same time, so that we could have a better control for the resonances.

0.8

0.8

 $B^+ \rightarrow K_1^+(1270) (\rightarrow K^0 \pi^+ \pi^0) \gamma$

- However, using $B \to K_1$ form factors calculated in [4], we expect about 40 times less $B \to K_1(1400)\gamma$ events compared to $B \to K_1(1270)\gamma$.
- ► The large error in the $K_1(1400)^+$ channel is originated from the fact that $K_1(1400)^+ \rightarrow K^+ \pi^- \pi^+$ proceeds only via $K^{*0}\pi^+$ mode \Rightarrow No source for the imaginary part.

where ε is the polarization vector of K_1 , $s_{ij} = (p_i + p_j)^2$.

• The decay $K_1(1270) \rightarrow K\pi\pi$ proceeds predominantly via $K^*\pi(16\%)$ and $\rho K(42\%)$ modes. The coefficients $c_{1,2}(s_{13}, s_{23})$ can be expressed in terms of the form factors or partial wave amplitudes of the $K_1 \to K^* \pi$, ρK transitions which we calculate using ${}^{3}P_{0}$ quark model [2].

The mixing angle issue

The observed $K_1(1270)$ and $K_1(1400)$ are not pure $1^{3}P_{1}(K_{1A})$ or $1^{1}P_{1}(K_{1B})$ states:

 $|K_1(1270)\rangle = |K_{1A}\rangle \sin \theta_{K_1} + |K_{1B}\rangle \cos \theta_{K_1}$ $|K_1(1400)\rangle = |K_{1A}\rangle \cos\theta_{K_1} - |K_{1B}\rangle \sin\theta_{K_1}$

• The mixing angle is essential to understand the K_1 -decay properties and in particular why $\mathcal{B}(B \to K_1(1400)\gamma) \ll \mathcal{B}(B \to K_1(1270)\gamma).$ • We find the mixing angle to be $\theta_{\kappa_1} = (60^{+5}_{-13})^\circ$ at 95% C.L. from the fit, combining the ratios of the measured branching fractions of K_1 to $(K^*\pi)_{S,D}$ and ρK channels.

$^{3}P_{0}$ Qark-Pair-Creation Model

The partial wave amplitudes for the axial-vector meson (A) decay to the ground states of vector (V) and pseudoscalar (P) mesons are given by

 $a_{S}(K_{1}(1270) \rightarrow K^{*}\pi/\rho K) = S(\sqrt{2}\sin\theta_{K_{1}} \mp \cos\theta_{K_{1}})$ $a_D(K_1(1270) \rightarrow K^* \pi / \rho K) = D(-\sin \theta_{K_1} \mp \sqrt{2} \cos \theta_{K_1})$ $a_{S}(K_{1}(1400) \rightarrow K^{*}\pi/\rho K) = S(\sqrt{2}\cos\theta_{K_{1}} \pm \sin\theta_{K_{1}})$ $a_D(K_1(1400) \to K^* \pi / \rho K) = D(-\cos \theta_{K_1} \pm \sqrt{2} \sin \theta_{K_1})$

 $S = \gamma \sqrt{\frac{3}{2} \frac{2l_1 - l_0}{18}}, \quad D = \gamma \sqrt{\frac{3}{2} \frac{l_1 + l_0}{18}}$ $I_m = \frac{1}{8} \int d^3 \vec{k} \mathcal{Y}_1^m (\vec{k}_P - \vec{k}) \psi_0^{(P)} (\vec{k}) \psi_0^{(V)} (-\vec{k}) \psi_1^{-m(A)} (\vec{k}_P + \vec{k})$

Conclusions

- 1. We investigate the $B \to K_1 \gamma$ decay in order to determine the photon polarization of the quark-level $b \to s \gamma$ process.
- 2. The use of the single variable $\omega(s_{13}, s_{23}, \cos \theta)$, which contains all the information on polarization in each event, avoids the complex multi-dimensional fit and enhances the sensitivity of the measurement.
- 3. New method gives a gain in accuracy of a factor 2 compared to the fit of pure $\cos \theta$ -distribution, integrated over the Dalitz region.
- 4. In our study we obtain the statistical accuracy of 6% for the SM-prediction for λ_{γ} for 10k events of $B^+ \rightarrow K_1^+(1270) (\rightarrow K^+ \pi^- \pi^+) \gamma$ decay.
- 5. Future experiments, LHCb and Super-B factories have good prospectives for the study of this channel. One expects an annual yield of about several dozens thousands of signal events at LHCb and several thousands at Super-B.

References

[1] M. Gronau, Y. Grossman, D. Pirjol and A. Ryd, Phys. Rev. Lett. 88 (2002) 051802. [2] A. Le Yaouanc, L. Oliver, O. Pène and J. C. Raynal, Phys. Rev. D 8 (1973) 2223. [3] M. Davier, L. Duflot, F. Le Diberder and A. Rougé, Phys. Lett. B 306 (1993) 411. [4] H. Hatanaka and K. C. Yang, Phys. Rev. D 77 (2008) 094023.